
Task 6.1 – Manual: Using the NAM with ParaStation MPI

 1

 Manual: Using the NAM with ParaStation MPI

Version 0.1 / December 2020

Abstract This document presents a user manual for functions and semantics as implemented
in the DEEP-EST project for accessing Network Attached Memory (NAM) via the Message-
Passing Interface (MPI) and related extensions, referred to as PSNAM.

Introduction
One distinct feature of the DEEP-EST prototype is the Network Attached Memory (NAM):
Special memory regions that can directly be accessed via Put/Get-operations from any node
within the Extoll network. For executing such RMA operations on the NAM, a new version of
the libNAM is available to the users that features a corresponding low-level API for this
purpose. However, to make this programming more convenient—and in particular to also
support parallel access to shared NAM data by multiple processes—an MPI extension with
corresponding wrapper functionalities to the libNAM API has also been developed in the
DEEP-EST project. This extension, which is called PSNAM, is a complementary part of the
ParaStation MPI—which is the MPI library of choice in the DEEP-EST project—and is as such
also available to users on the DEEP-EST prototype system. In this way, application
programmers shall be enabled to use known MPI functions (especially those of the MPI RMA
interface) for accessing NAM regions in a standardized (or at least harmonized) way under the
familiar roof of an MPI world. In doing so, the PSNAM extensions try to stick to the current
MPI standard as close as possible and to avoid the introduction of new API functions wherever
possible.

Acquiring NAM Memory

General Semantics
The main issue when mapping the MPI RMA interface onto the libNAM API is the fact that MPI
assumes that all target and memory regions for RMA operations are always associated with
an MPI process being the owner of that memory. That means that in an MPI world, remote
memory regions are always addressed by means of a process rank (plus handle, which is the
respective window object, plus offset), whereas the libNAM API merely requires an opaque
handle for addressing the respective NAM region (plus offset). Therefore, a mapping between
remote MPI ranks and the remote NAM memory needs somehow to be realized. In PSNAM,
this is achieved by sticking to the notion of an ownership in a sense that definite regions of the
NAM memory space are logically assigned to particular MPI ranks. However, it has to be
emphasised that this is a purely software-based mapping being conducted by the PSNAM
wrapper layer. That means that the related MPI window regions (though globally accessible
and located within the NAM) have then to be addressed by means of the rank of that process
to which the NAM region is assigned.

Task 6.1 – Manual: Using the NAM with ParaStation MPI

 2

Semantic Terms
At this point, the semantic terms of memory allocation, memory region and memory segment
are to be determined for their use within this proposal. The reason for this is that, for example,
the term “allocation” is commonly used for both: a resource, as granted by the job scheduler,
and a memory region, as returned e.g. by malloc. Therefore, we need a stricter nomenclature
here:

NAM Memory Allocation
A certain amount of contiguous NAM memory space that has been requested from the
NAM Manager (and possibly granted through the job scheduler) for an MPI session.

NAM Memory Segment
A certain amount of contiguous NAM memory space that is part of a
NAM allocation. According to this, a NAM allocation can logically be subdivided by the
PSNAM wrapper layer into multiple memory segments, which can then again be
assigned to MPI RMA windows.

NAM Memory Region
A certain amount of contiguous NAM memory space that is associated to a certain MPI
rank in the context of an MPI RMA window.

For performance and also for management reasons, allocation requests towards the NAM
and/or the resource manager should preferably occur rarely—so, for instance, only once at
the beginning of an MPI session. In order to provide MPI applications with the ability to handle
multiple MPI RMA windows within such an allocation, PSNAM implements a further layer of
memory management that allows for a logical acquiring and releasing of NAM segments
within the limits of the granted allocation.

Interface Specification
For assigning memory regions on the NAM with MPI RMA windows, a semantic extension to
the well-known MPI_WIN_ALLOCATE function via its MPI info parameter can be used:

MPI_WIN_ALLOCATE (size, disp_unit, info, comm, baseptr, win)
IN size size of memory region in bytes (non-negative integer, may differ between processes)
IN disp_unit local unit size for displacements, in bytes (positive integer)
IN info info argument (handle) with psnam info keys and values
IN comm intra-communicator (handle)
OUT baseptr always NULL in case of PSNAM windows
OUT win window object returned by the call (handle)

MPI_WIN_ALLOCATE is a collective call to be executed by all processes in the group of comm.
This in turn enables the PSNAM wrapper layer to treat the set of allocated memory regions as
an entity and logically link the regions to a shared RMA window.

The semantic extension compared to the MPI standard is the evaluation of the following keys
within the given MPI info object:

• psnam_manifestation
• psnam_consistency
• psnam_structure

Task 6.1 – Manual: Using the NAM with ParaStation MPI

 3

The psnam_manifestation key specifies which memory type shall be used for a region. The
value for using the NAM is psnam_manifesation_libnam—but it should be mentioned that
also node-local persistent shared-memory (psnam_manifestation_pershm) can here be
chosen as another supported manifestation. In fact, each process in comm can even select a
different manifestation of these two for the composition of the window.

The psnam_consistency key specifies whether the memory regions of an RMA window shall
be persistent (psnam_consistency_persistent) or whether they shall be released during the
respective MPI_WIN_FREE call (psnam_consistency_volatile). This key must be selected
equally among all processes in comm.

The psnam_structure key specifies the memory layout as formed by the multiple regions of an
MPI window. Currently, the following three different memory layouts are supported:

• psnam_structure_raw_and_flat
• psnam_structure_managed_contiguous
• psnam_structure_managed_distributed

The chosen memory layout also decides whether and how the PSNAM layer stores further
meta data in the NAM regions to allow a later recreation of the structure while reconnecting
to a persistent RMA window by another MPI session. The chosen structure must be the same
for all processes in comm.

Raw and Flat
The psnam_structure_raw_and_flat layout is intended to store raw data (i.e. untyped data) in
the NAM without adding meta information. According to this layout, only rank 0 of comm is
allowed to pass a size parameter greater than zero during the MPI_WIN_ALLOCATE call.
Hence, only rank 0 allocates one (contiguous) NAM region forming the window and all RMA
operations on such a flat window have therefore to be addressed to target rank = 0.

Managed Contiguous
In the psnam_structure_managed_contiguous case, also only rank 0 allocates (contiguous)
NAM space, but this space is then subdivided according to the size parameters as passed by
all processes in comm. That means that here also processes with rank > 0 can pass a size > 0
and hence acquire a rank-addressable (sub-)region within this window. Furthermore, the
information about the number of processes and the respective region sizes forming that
window is being stored as meta data within the NAM. That way, a subsequent MPI session re-
connecting to this window can retrieve this information and hence recreate the former
structure of the window.

Managed Distributed
In a psnam_structure_managed_distributed window, each process that passes a size > 0 also
allocates NAM memory explicitly and on its own. It then contributes this memory as a NAM
region to the RMA window so that the corresponding NAM allocation becomes directly
addressable by the respective process rank. The following Figure to illustrates the differences
between these three structure layouts.

Task 6.1 – Manual: Using the NAM with ParaStation MPI

 4

Figure: The different layouts of the three selectable PSNAM window structures

Examples
MPI_Info_create(&info);
MPI_Info_set(info, "psnam_manifestation", "psnam_manifestation_libnam");
MPI_Info_set(info, "psnam_consistency", "psnam_consistency_volatile");

// Allocate a "raw_and_flat" window:
MPI_Info_set(win, "psnam_structure", "psnam_structure_raw_and_flat");
MPI_Win_allocate(rank ? 0 : win_size, 1, info, comm, NULL, &win_flat);

// Put some data into the "raw_and_flat" window:
MPI_Win_fence(0, win_flat);
if (rank == 0)
 MPI_Put(data_ptr, win_size, MPI_BYTE, 0 /*=target*/, 0 /*=offset*/, win_size, MPI_BYTE, win_flat);
MPI_Win_fence(0, win_flat);
…

// Allocate a "managed_distributed" window:
MPI_Info_set(win, "psnam_structure", "psnam_structure_ managed_distributed");
MPI_Win_allocate(my_region_size * sizeof(int), sizeof(int) , info, comm, NULL, &win_dist);

// Put some data into the "managed_distributed" window:
MPI_Win_fence(0, win_dist);
MPI_Put(data_ptr, my_region_size, MPI_INT, my_rank, 0 /*=offset*/, my_region_size, MPI_INT, win_dist);
MPI_Win_fence(0, win_dist);
…

Task 6.1 – Manual: Using the NAM with ParaStation MPI

 5

Persistent NAM Memory

General Semantics
A central use-case for the NAM in DEEP-EST will be the idea of facilitating workflows between
different applications and/or application steps. For doing so, the data once put into NAM
memory shall later be re-usable by other MPI applications and/or sessions. Of course, this
requires that NAM regions—and hence also their related MPI windows—can somehow be
denoted as “persistent” so that their content gets not be wiped when the window is freed. In
fact, this can be achieved by setting the above mentioned psnam_consistency_persistent MPI
info key when calling MPI_WIN_ALLOCATE.

Window Names
If the creation of the persistent NAM window was successful, the related NAM regions
become addressable as a joint entity by means of a logical name that is system-wide unique.
This window name can then in turn be retrieved by querying the info object attached to that
window afterwards via the info key psnam_window_name.

If an MPI application wants to pass data via such a persistent window to a subsequent MPI
application, it merely has to pass this window name somehow to its successor so that this
other MPI session can then re-attach to the respective window. The passing of this window
name could, for example, be done via standard I/O, via command line arguments, or even via
MPI-based name publishing. As the knowledge about this string allows other MPI sessions to
attach and to modify the data within the persistent window, it is the responsibility of the
application programmer to ensure that data races are avoided—for example, by locally
releasing the window via MPI_WIN_FREE before publishing the window name.

Example
MPI_Info_create(&info);
MPI_Info_set(info, "psnam_consistency", "psnam_consistency_persistent");
MPI_Win_allocate(sizeof(int) * ELEMENTS_PER_PROC, sizeof(int), info, comm, NULL, &win);
MPI_Info_free(&info);

MPI_Win_get_info(win, &info);
MPI_Info_get(info, "psnam_window_name", INFO_VALUE_LEN, info_value, &flag);
if(flag) { strcpy(window_name, info_value);
 printf("The window's name is: %s\n", window_name);
} else { printf("No psnam window name found!\n");
 MPI_Abort(MPI_COMM_WORLD, -1);
}
…
// Work on window…
…

MPI_Win_free(&win);
if(comm_rank == 0) {
 sprintf(service_name, "%s:my-peristent-psnam-window", argv[0]);
 MPI_Publish_name(service_name, MPI_INFO_NULL, window_name);
}

Task 6.1 – Manual: Using the NAM with ParaStation MPI

 6

Releasing NAM Memory
According to the standard, an MPI RMA window must be freed by the collective call of
MPI_WIN_FREE. In case of a PSNAM window, the selection of the psnam_consistency MPI info
key decided whether the corresponding NAM memory regions are to be freed, too. Since
MPI_WIN_FREE has no info parameter, the corresponding selection has either already to be
made when calling MPI_WIN_ALLOCATE and/or can also be made/changed later by using
MPI_WIN_INFO_SET.

A sound MPI application must free all MPI window objects before calling MPI_FINALIZE—
regardless whether the corresponding NAM region should be persistent or not. According to
this, there are different degrees with respect to the lifetime of an MPI window: Common MPI
windows just live as long as MPI_WIN_FREE has not been called and the related session is still
alive. In contrast to this, persistent NAM windows exist as long as the assigned NAM space is
granted by the NAM manager. Upon an MPI_WIN_FREE call, such windows are merely freed
from the perspective of the MPI current application, not from the view of the NAM manager.

Attaching to Persistent NAM Regions
Obviously, there needs to be a way for subsequent MPI sessions to attach to the persistent
NAM regions previous MPI sessions have created. The PSNAM wrapper layer enables this to
be done via a call to MPI_COMM_CONNECT, which is normally used for establishing
communication between distinct MPI sessions:

MPI_COMM_CONNECT (window_name, info, root, comm, newcomm)
IN window_name globally unique window name (string, used only on root)
IN info implementation-dependent information (handle, used only on root)
IN root rank in comm of root node (integer)
IN comm intracommunicator over which call is collective (handle)
OUT newcomm intercommunicator with server as remote group (handle)

When passing a valid name of a persistent NAM window plus an info argument with the key
psnam_window_connect and the value true, this function will return an inter-communicator
that then serves for accessing the remote NAM memory regions. However, this returned inter-
communicator is just a pseudo communicator that cannot be used for any point-to-point or
collective communication, but that rather acts like a handle for RMA operations on a virtual
window object embodied by the remote NAM memory.

In doing so, the original structure of the NAM window is being retained. That means that the
window is still divided (and thus addressable) in terms of the MPI ranks of that process group
that created the window before. Therefore, a call to MPI_COMM_REMOTE_SIZE on the
returned inter-communicator reveals the former number of processes in that group. For
actually creating the local representative for the window in terms of an MPI_WIN datatype,
the MPI_WIN_CREATE_DYNAMIC function can be used with the inter-communicator as the
input and the window handle as the output parameter.

Task 6.1 – Manual: Using the NAM with ParaStation MPI

 7

Querying Information about a Remote Window
After determining the size of the former progress group via MPI_COMM_REMOTE_SIZE, there
might also be a demand for getting the information about the remote region sizes as well as
the related unit sizes for displacements. For this purpose, the PSNAM wrapper hooks into the
MPI_WIN_SHARED_QUERY function that returns these values according to the passed rank:

MPI_WIN_SHARED_QUERY (win, rank, size, disp_unit, baseptr)
IN win window object used for communication (handle)
IN rank remote region rank
OUT size size of the region at the given rank
OUT disp_unit local unit size for displacements at the given rank (in bytes)
OUT baseptr always NULL in case of PSNAM windows

Example
MPI_Info_create(&win_info);
MPI_Info_set(win_info, "psnam_window_connect", "true");
MPI_Comm_connect(window_name, info, 0, MPI_COMM_WORLD, &inter_comm);
MPI_Info_free(&info);

printf("Connection to persistent memory region established!\n");
MPI_Comm_remote_size(inter_comm, &remote_group_size);
printf("Number of former process group that created the NAM window: %d\n", remote_group_size);
MPI_Win_create_dynamic(MPI_INFO_NULL, inter_comm, &win);
…
For (int region_rank=0; region_rank < remote_group_size; region_rank++) {

MPI_Win_shared_query(win, region_rank, ®ion_size[i], &disp_unit[i], NULL);
}
…

Pre-Allocated NAM Memory and Segments
Without further info parameters than described so far, MPI_WIN_ALLOCATE will always try to
allocate NAM memory itself and “on-demand”. However, a common use case might be that
the required NAM memory needed by an application has already been allocated beforehand
via the batch system—and the question is how such pre-allocated memory can be handled on
MPI level. In fact, using an existing NAM allocation during an MPI_WIN_ALLOCATE call instead
of allocating new space in quite straight forward by applying psnam_libnam_allocation_id as
a further info key plus the respective NAM allocation ID as the related info value.

Usage of Segments
However, a NAM-based MPI window may possibly still consist of multiple regions, and it
should also still be possible to build multiple MPI windows from the space of a single NAM
(pre-)allocation. Therefore, a means for subdividing NAM allocations needs to be provided—
and that's exactly what segments are intended for: A segment is a “meta-manifestation” that
maintains a size and offset information for a sub-region within a larger allocation. This offset
can either be set explicitly via psnam_segment_offset (e.g., for splitting an allocation among
multiple processes), or it can be managed dynamically and implicitly by the PSNAM layer (e.g.,
for using the allocated memory across multiple MPI windows).

Task 6.1 – Manual: Using the NAM with ParaStation MPI

 8

Recursive Usage
The concept of segments can also be applied recursively. For doing so, PSNAM windows of the
“raw and flat” structure feature the info key psnam_allocation_id plus respective value that
in turn can be used to pass a reference to an already existing allocation to a subsequent
MPI_WIN_ALLOCATE call with psnam_manifestation_segment as the region manifestation.
That way, existing allocations can be divided into segments—which could then even further
sub-divided into sub-sections, and so forth.

Example
MPI_Info_create(&info_set);
MPI_Info_set(info_set, "psnam_manifestation", "psnam_manifestation_libnam");
MPI_Info_set(info_set, "psnam_libnam_allocation_id", getenv("SLURM_NAM_ALLOC_ID");
MPI_Info_set(info_set, "psnam_structure", "psnam_structure_raw_and_flat");

MPI_Win_allocate(allocation_size, 1, info_set, MPI_COMM_WORLD, NULL, &raw_nam_win);
MPI_Win_get_info(raw_nam_win, &info_get);
MPI_Info_get(info_get, "psnam_allocation_id", MPI_MAX_INFO_VAL, segment_name, &flag);

MPI_Info_set(info_set, "psnam_manifestation", "psnam_manifestation_segment");
MPI_Info_set(info_set, "psnam_segment_allocation_id", segment_name);
sprintf(offset_value_str, "%d", (allocation_size / num_ranks) * my_rank);
MPI_Info_set(info_set, "psnam_segment_offset", offset_value_str);

MPI_Info_set(info_set, "psnam_structure", "psnam_structure_managed_contiguous");
MPI_Win_allocate(num_int_elements * sizeof(int), sizeof(int), info_set, MPI_COMM_WORLD, NULL, &win);
…

Accessing Data in NAM Memory
Accesses to the NAM memory must always be made via MPI_PUT and MPI_GET calls. Direct
load/store accesses are (of course) not possible—and MPI_ACCUMULATE is currently also not
supported since the NAM is just a passive memory device, at least so far. However, after an
epoch of accessing the NAM, the respective origin buffers must not be reused or read until a
synchronization has been performed. Currently, only the MPI_WIN_FENCE mechanism is
supported for doing so. According to this loosely-synchronous model, computation phases
alternate with NAM access phases, each completed by a call of MPI_WIN_FENCE, acting as a
memory barrier and process synchronization point.

Example
for (pos = 0; pos < region_size; pos++) put_buf[pos] = (int)(put_rank+pos);
MPI_Put(put_buf, region_size, MPI_INT, target_region_rank, 0, region_size, MPI_INT, win);
MPI_Get(get_buf, region_size, MPI_INT, target_region_rank, 0, region_size, MPI_INT, win);

MPI_Win_fence(0, win);

for (pos = 0; pos < region_size - WIN_DISP; pos++) {

if (get_buf[pos] != (int(put_rank+pos) {
fprintf(stderr, "ERROR at %d: %d vs. %d\n", pos, (int)get_buf[pos], put_rank+pos);

MPI_Win_fence(0, win);
…

Task 6.1 – Manual: Using the NAM with ParaStation MPI

 9

Alternative interface
The extensions presented so far were all of semantic nature, i.e. without introducing new API
functions. However, the changed usage of MPI standard functions may also be a bit confusing,
which is why a set of macros is also provided, which in turn encapsulate the MPI functions
used for the NAM handling. That way, readability of application code with NAM employment
can be improved. These encapsulating macros are the following:

• MPIX_Win_allocate_intercomm(size, disp_unit, info_set, comm, intercomm, win)
…alias for MPI_Win_allocate()

• MPIX_Win_connect_intercomm(window_name, info, root, comm, intercomm)

…alias for MPI_Comm_connect()

• MPIX_Win_create_intercomm (info, comm, win)
…alias for MPI_Win_create_dynamic()

• MPIX_Win_intercomm_query(win, rank, size, disp_unit)

…alias for MPI_Win_shared_query()

	Manual: Using the NAM with ParaStation MPI
	Version 0.1 / December 2020
	Introduction
	Acquiring NAM Memory
	General Semantics
	Semantic Terms
	Interface Specification
	Examples

	Persistent NAM Memory
	General Semantics
	Window Names
	Example

	Releasing NAM Memory
	Attaching to Persistent NAM Regions
	Querying Information about a Remote Window
	Example

	Pre-Allocated NAM Memory and Segments
	Usage of Segments
	Recursive Usage
	Example

	Accessing Data in NAM Memory
	Example

	Alternative interface

