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Quick Overview

Heat Benchmark

In this section, we exemplify the use of TAMPI and NAM windows through the Heat benchmark. We use an iterative Gauss-Seidel method to solve the

Heat equation, which is a parabolic partial differential equation that describes the distribution of heat in a given region over time. This benchmark

simulates the heat diffusion on a 2D matrix of floating-point elements during multiple timesteps. The 2D matrix is logically divided into 2D blocks and may

have multiple rows and columns of blocks. The computation of an element at position M[r][c] in the timestep t depends on the value of the top and

left elements (M[r-1][c] and M[r][c-1]) computed in the current timestep t, and the right and bottom elements (M[r][c+1] and M[r+1][c])

from the previous timestep t-1. We can extrapolate this logic in the context of blocks so that a block has a dependency on the computation of its

adjacent blocks. Notice that the computation of blocks in a diagonal is fully concurrent because there is no dependency between them.

There are three different MPI versions, and all of them distribute the 2D matrix across ranks assigning consecutive rows of blocks to each MPI rank. Note

that the matrix is distributed by blocks vertically but not horizontally. Therefore, an MPI rank has two neighboring ranks: one above and another below.

The exceptions are the first and last ranks since they have a single neighbor. This distribution requires the neighboring ranks to exchange the external

rows (halos) from their boundary blocks in order to compute their local blocks in each timestep.

This benchmark is publicly available in the ?https://pm.bsc.es/gitlab/DEEP-EST/apps/Heat repository. The first version is based on an MPI-only

parallelization, while the other two are hybrid MPI+OmpSs-2 leveraging tasks and the TAMPI library. We briefly describe each one below:

• 01.heat_mpi.bin: A straightforward MPI-only implementation using blocking MPI primitives (MPI_Send and MPI_Recv) to send and receive the

halo rows. The computation of blocks and exchange of halos inside each rank is completely sequential.

• 02.heat_itampi_ompss2_tasks.bin: A hybrid MPI+OmpSs-2 version leveraging TAMPI that performs both computation and communications

using tasks with data dependencies. It instantiates a task to compute each of the blocks inside each rank and for each of the timesteps. It also

creates a sending and receiving tasks to exchange the block halo rows for each of the boundary blocks. The execution of tasks follows a data-flow

model because tasks declare the dependencies on the data they read/modify. Moreover, communication tasks call non-blocking MPI primitives

and leverage the non-blocking mechanism of TAMPI (TAMPI_Iwait), so communications are fully non-blocking and asynchronous from the user

point of view. Communication tasks issue non-blocking communications that are transparently managed and periodically checked by TAMPI. These

tasks do not explicitly wait for their communication, but they delay their completion (asynchronously) until their MPI communications finish.

• 03.heat_tampirma_ompss2_tasks.bin: An implementation similar to 02.heat_itampi_ompss2_tasks.bin but using MPI RMA

operations (MPI_Put) to exchange the block halo rows. This program leverages the MPI active target RMA communication using the MPI window

fences to open/close RMA access epochs. It uses the TAMPI library and the new integration for the MPI_Win_ifence synchronization function. In

this way, we use TAMPI_Iwait to bind the completion of a communication task to the finalization of a MPI_Win_ifence. Therefore, the

opening/closing of RMA access epochs is completely non-blocking and asynchronous from the user point of view. We assume the calls to MPI_Put

are non-blocking. Finally, as an optimization, we register multiple MPI RMA windows for each rank to allow concurrent communications through the

different RMA windows. Each RMA window holds a part of the halo row that may belong to multiple logical blocks. Each communication task

exchanges the part of the halo row assigned to a single MPI window.

Using NAM in Heat benchmark

In this benchmark, we use the NAM memory to save the computed matrix periodically. The idea is to save different states (snapshots) of the matrix

during the execution in a persistent NAM memory region. Then, another program could retrieve all the matrix snapshots, process them and produce a

GIF animation showing the heat's evolution throughout the execution. Notice that we cannot use regular RAM for that purpose because the matrix could

be huge, and we may want to store tens of matrix snapshots. We also want to keep it persistently so that other programs could process the stored data.

Moreover, the memory should be easily accessible by the multiple MPI ranks or their tasks in parallel. The NAM memory satisfies all these requirements,

and as stated previously, ParaStationMPI allows accessing NAM allocations through standard MPI RMA operations.

The Heat benchmark allocates a single MPI window that holds the whole NAM region, which is used by all ranks (via the MPI_COMM_WORLD 

communicator) and throughout the execution. Every few timesteps (specified by the user), it saves the whole matrix into a specific NAM subregion. Each 

timestep that saves a matrix snapshot employs a distinct NAM subregion. These subregions are placed one after the other, consecutively, without 

overlapping. Thus, the entire NAM region's size is the full matrix size multiplied by the number of times the matrix will be saved. Even so, we allocate the 

NAM memory region using the Managed Contiguous layout (psnam_structure_managed_contiguous). This means that rank 0 allocates the whole 

region, but each rank acquires a consecutive memory subset, where it will store its blocks' data for every snapshot. For instance, the NAM allocation will

https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/TAMPI_NAM#QuickOverview
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/TAMPI_NAM#HeatBenchmark
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/TAMPI_NAM#References
https://pm.bsc.es/gitlab/DEEP-EST/apps/Heat
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first have the space for storing all snapshots of the blocks from rank 0, followed by the space for all snapshots of blocks from rank 1, and so on. By using

that layout, NAM subregions are rank-addressed using the rank it belongs to, simplifying the saving and retrieving of snapshots.

Then, when a timestep requires a snapshot, the application instantiates multiple tasks that save the matrix data into the corresponding NAM subregion.

Each MPI rank creates a task for writing (copying) the data of each of its matrix blocks into the NAM subregion. These communication tasks do not have

any data dependency between them, so they can write data to the NAM using regular MPI_Put in parallel. Ranks only write to their own subregions,

never in other ranks' subregions. Nevertheless, we must call all MPI_Puts inside an MPI RMA access epoch, so there must be a window fence call

before all the MPI_Puts, and another one after them to close the epoch, for each of the snapshot timesteps. Here is where we leverage the new function

MPI_Win_ifence along with the TAMPI non-blocking support. In this way, we can fully taskify both synchronization and writing of the NAM window,

keeping the data-flow model and without closing the parallelism for doing the snapshots (e.g., with a taskwait) . Thanks to the task data dependencies

and TAMPI, we cleanly include the snapshots in the application's data-flow execution as any other regular communication task with dependencies.

The following pseudo-code shows how the saving of snapshots works in 02.heat_itampi_ompss2_tasks.bin:

void solve() {

   int namSnapshotFreq = ...;

   int namSnapshotId = 0;

   for (t = 1; t <= timesteps; ++t) {

       // Computation and communication tasks declaring

       // dependencies on the blocks they process

       gaussSeidelSolver(..all blocks in current rank..);

       if (t % namSnapshotFreq == 0) {

           namSaveMatrix(namSnapshotId, namWindow, ...);

           ++namSnapshotId;

       }

   }

   #pragma oss taskwait

}

The function above is the main procedure that executes the Heat's timesteps applying the Gauss-Seidel method. All MPI ranks run this function

concurrently, each one working with their corresponding blocks from the matrix. In each timestep, the gaussSeidelSolver function instantiates all the

computation and communication tasks that process the rank's blocks and exchanges the halo rows with the neighboring ranks. These tasks declare the

proper input/output dependencies on the blocks they are reading/writing. Every some timesteps, the algorithm calls namSaveMatrix that will issue

tasks to perform a snapshot of the data computed after computing that timestep. Notice that namSaveMatrix will have to instantiate tasks with input

dependencies on the blocks in order to perform the snapshot at the right moment of the execution, i.e. after the gaussSeidelSolver tasks from that

timestep. Notice also that we identify each snapshot with the namSnapshotId, which we use to know where we should store the snapshot data inside

the NAM window. This taskwait at the end of the algorithm is the only one in the whole execution; we do not close the parallelism anywhere else.

void namSaveMatrix(int namSnapshotId, MPI_Win namWindow, ...) { 

   // Compute snapshot offset inside NAM region 

   int snapshotOffset = namSnapshotId*sizeof(..all blocks in current rank..); 

 

   // Open RMA access epoch to write the NAM window for this timestep 

   #pragma oss task in(..all blocks in current rank..) inout(namWindow) 

   { 

       MPI_Request request; 

       MPI_Win_ifence(namWindow, 0, &request); 

       TAMPI_Iwait(&request, MPI_STATUS_IGNORE); 

   } 

 

   // Write all blocks from the current rank to NAM subregions concurrently 

   for (B : all blocks in current rank) { 

       #pragma oss task in(..block B..) in(namWindow) 

       { 

           MPI_Put(/* source data */   ..block B.., 

                   /* target rank */   currentRank, 

                   /* target offset */ snapshotOffset + B, 

                   /* target window */ namWindow); 

       }
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   } 

 

   // Close RMA access epoch to write the NAM window for this timestep 

   #pragma oss task in(..all blocks in current rank..) inout(namWindow) 

   { 

       MPI_Request request; 

       MPI_Win_ifence(namWindow, 0, &request); 

       TAMPI_Iwait(&request, MPI_STATUS_IGNORE); 

   } 

}

The function above is the one called periodically from the primary procedure. It instantiates the tasks that will perform the snapshot of the current rank's

blocks into their corresponding NAM memory subregions. The first step is to compute the offset of the current snapshot inside the NAM region using the

snapshot identifier. Before writing to the NAM window, the application must ensure that an MPI RMA access epoch has been opened on that window.

That is what the first task is doing. After all the blocks have been computed in that timestep and are ready to be read (notice its task dependencies), the

first task will run and execute an MPI_Win_ifence to start the window epoch's opening. This MPI function generates an MPI request and serves as

parameter of the subsequent call to TAMPI_Iwait, which binds the current task's completion to the finalization of the MPI request. This last call is

non-blocking and asynchronous, so the fence operation may not be completed after returning. The task can finish its execution, but it will not complete

until the fence operation finishes. Once it finishes, TAMPI will automatically complete the task and make its successor tasks ready. The successors of the

fence task are the ones that perform the actual writing (copying) of data into the NAM memory by calling MPI_Put. All blocks can be saved in the NAM

memory in parallel by different tasks. The source of the MPI_Put is the block itself (in regular RAM), while the destination is the place where the block

should be written inside the NAM region. After all writer tasks finish, it is the turn for the task that closes the MPI RMA access epoch on the NAM window.

This one should behave similarly to the one that opened the epoch.

Notice that all tasks declare the proper dependencies on both the matrix blocks and the NAM window to guarantee their correct execution order. Thanks

to these data dependencies and the TAMPI non-blocking feature, we can cleanly add the execution of the snapshots into the task graph, being executed

asynchronously, and being naturally interleaved with the other computation and communication tasks. Finally, it is worth noting that the blocks are written

into the NAM memory in parallel, utilizing the machine's CPU and network resources efficiently.

Requirements

The requirements of this application are shown in the following lists. The main requirements are:

• The GNU or Intel® Compiler Collection.

• The ParaStationMPI installation supporting multi-threading and featuring the libNAM integration that allows access to NAM memory regions

through MPI RMA windows.

• The Task-Aware MPI (TAMPI) library which defines a clean interoperability mechanism for MPI and OpenMP/OmpSs-2 tasks. It supports both

blocking and non-blocking MPI operations by providing two different interoperability mechanisms. Downloads and more information at

?https://github.com/bsc-pm/tampi.

• The OmpSs-2 model which is the second generation of the OmpSs programming model. It is a task-based programming model originated from the

ideas of the OpenMP and StarSs programming models. The specification and user-guide are available at ?https://pm.bsc.es/ompss-2-docs/spec/ and

?https://pm.bsc.es/ompss-2-docs/user-guide/, respectively. OmpSs-2 requires both Mercurium and Nanos6 tools. Mercurium is a source-to-source

compiler which provides the necessary support for transforming the high-level directives into a parallelized version of the application. The Nanos6

runtime system provides the services to manage all the parallelism in the application (e.g., task creation, synchronization, scheduling, etc.).

Downloads at ?https://github.com/bsc-pm.

• The NAM software allowing access to NAM memory.

Building & Executing on DEEP

The instructions to build and execute the Heat benchmark with NAM checkpointing will appear here soon.
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