
WikiPrint - from Polar Technologies

1

Programming with OmpSs-2

Table of contents:

• Quick Overview

• Quick Setup on DEEP System for a Pure OmpSs-2 Application

• Using the Repositories

• Examples:

• A Step-By-Step Detailed Guide to Execute the Multisaxpy Benchmark (OmpSs-2)

• Dot-product Benchmark (OmpSs-2)

• Mergesort Benchmark (OmpSs-2)

• Nqueens Benchmark (OmpSs-2)

• Matmul Benchmark (OmpSs-2)

• Cholesky Nenchmark (OmpSs-2+MKL)

• Nbody Nenchmark (MPI+OmpSs-2+TAMPI)

• Heat Benchmark (MPI+OmpSs-2+TAMPI)

Quick Overview

OmpSs-2 is a programming model composed of a set of directives and library routines that can be used in conjunction with a high-level programming

language (such as C, C++ or Fortran) in order to develop concurrent applications. Its name originally comes from two other programming models:

OpenMP and StarSs. The design principles of these two programming models constitute the fundamental ideas used to conceive the OmpSs

philosophy.

OmpSs-2 thread-pool execution model differs from the fork-join parallelism implemented in OpenMP.

A task is the minimum execution entity that can be managed independently by the runtime scheduler. Task dependences let the user annotate the data

flow of the program and are used to determine, at runtime, if the parallel execution of two tasks may cause data races.

The reference implementation of OmpSs-2 is based on the Mercurium source-to-source compiler and the Nanos6 runtime library:

• Mercurium source-to-source compiler provides the necessary support for transforming the high-level directives into a parallelized version of the

application.

• Nanos6 runtime library provides services to manage all the parallelism in the user-application, including task creation, synchronization and data

movement, as well as support for resource heterogeneity.

Additional information about the OmpSs-2 programming model can be found at:

• OmpSs-2 official website. ?https://pm.bsc.es/ompss-2

• OmpSs-2 specification. ?https://pm.bsc.es/ftp/ompss-2/doc/spec

• OmpSs-2 user guide. ?https://pm.bsc.es/ftp/ompss-2/doc/user-guide

• OmpSs-2 examples repository. ?https://pm.bsc.es/gitlab/ompss-2/examples

• OmpSs-2 manual with examples and exercises. ?https://pm.bsc.es/ftp/ompss-2/doc/examples/index.html

• Mercurium official website. ?Link 1, ?Link 2

• Nanos official website. ?Link 1, ?Link 2

Quick Setup on DEEP System for a Pure OmpSs-2 Application

We highly recommend to interactively log in a cluster module (CM) node to begin using OmpSs-2. To request an entire CM node for an interactive

session, please execute the following command to use all the 48 available threads:

srun -p dp-cn -N 1 -n 1 -c 48 --pty /bin/bash -i

Note that the command above is consistent with the actual hardware configuration of the cluster module with hyper-threading enabled.

OmpSs-2 has already been installed on DEEP and can be used by simply executing the following commands:

https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#QuickOverview
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#QuickSetuponDEEPSystemforaPureOmpSs-2Application
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#UsingtheRepositories
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#AStep-By-StepDetailedGuidetoExecutetheMultisaxpyBenchmarkOmpSs-2
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#Dot-productBenchmarkOmpSs-2
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#MergesortBenchmarkOmpSs-2
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#NqueensBenchmarkOmpSs-2
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#MatmulBenchmarkOmpSs-2
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#CholeskyBenchmarkOmpSs-2MKL
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#NbodyBenchmarkMPI+OmpSs-2TAMPI
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#HeatBenchmarkMPI+OmpSs-2TAMPI
https://pm.bsc.es/ompss-2
https://pm.bsc.es/ftp/ompss-2/doc/spec
https://pm.bsc.es/ftp/ompss-2/doc/user-guide
https://pm.bsc.es/gitlab/ompss-2/examples
https://pm.bsc.es/ftp/ompss-2/doc/examples/index.html
https://www.bsc.es/research-and-development/software-and-apps/software-list/mercurium-ccfortran-source-source-compiler
https://pm.bsc.es/mcxx
https://www.bsc.es/research-and-development/software-and-apps/software-list/nanos-rtl
https://pm.bsc.es/nanox


WikiPrint - from Polar Technologies

2

modulepath="/usr/local/software/skylake/Stages/2018b/modules/all/Core:$modulepath"

modulepath="/usr/local/software/skylake/Stages/2018b/modules/all/Compiler/mpi/intel/2019.0.117-GCC-7.3.0:$modulepath"

modulepath="/usr/local/software/skylake/Stages/2018b/modules/all/MPI/intel/2019.0.117-GCC-7.3.0/psmpi/5.2.1-1-mt:$modulepath"

export MODULEPATH="$modulepath:$MODULEPATH"

module load OmpSs-2

Remember that OmpSs-2 uses a thread-pool execution model which means that it permanently uses all the threads present on the system. Users are

strongly encouraged to always check the system affinity by running the NUMA command srun numactl --show:

$ srun numactl --show

policy: default

preferred node: current

physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

cpubind: 0 1 

nodebind: 0 1 

membind: 0 1 

as well as the Nanos6 command srun nanos6-info --runtime-details | grep List:

$ srun nanos6-info --runtime-details | grep List

Initial CPU List 0-47

NUMA Node 0 CPU List 0-35

NUMA Node 1 CPU List 12-47

System affinity can be used to specify, for example, the ratio of MPI and OmpSs-2 processes for a hybrid application and can be modified by user

request in different ways:

• Via the command srun or salloc. However, if the affinity given by SLURM does not correspond to the resources requested, it should be reported

to the system administrators.

• Via the command numactl.

• Via the command taskset.

Using the Repositories

All the examples shown here are publicly available at ?https://pm.bsc.es/gitlab/ompss-2/examples. Users must clone/download each example's

repository and then transfer it to a DEEP working directory.

System Configuration

Please refer to section Quick Setup on DEEP System to get a functional version of OmpSs-2 on DEEP. It is also recommended to run OmpSs-2 via an

interactive session on a cluster module (CM) node.

Building and Running the Examples

All the examples come with a Makefile already configured to build (e.g. make) and run (e.g. make run) them. You can clean the directory with the

command make clean.

Controlling the Available Threads

In order to limit or constraint the available threads for an application, the Unix taskset tool can be used to launch applications with a given thread affinity.

In order to use taskset, simply precede the application's binary with taskset followed by a list of CPU IDs specifying the desired affinity:

taskset -c 0,2-4 ./application

https://pm.bsc.es/gitlab/ompss-2/examples
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#QuickSetuponDEEPSystem


WikiPrint - from Polar Technologies

3

The example above will run application with 4 cores: 0, 2, 3, 4.

Creating Dependency Graphs

Nanos6 allows for a graphical representation of data dependencies to be extracted. In order to generate said graph, run the application with the NANOS6

environment variable set to graph:

NANOS6=graph ./application

By default graph nodes will include the full path of the source code. To remove it, set the following environment variable:

NANOS6_GRAPH_SHORTEN_FILENAMES=1

The result will be a PDF file with several pages, each representing the graph at a certain point in time. For best results, we suggest to display the PDF

with single page view, showing a full page and to advance page by page.

Obtaining Statistics

Another equally interesting feature of Nanos6 is obtaining statistics. To do so, simply run the application as:

NANOS6=stats ./application or also NANOS6=stats-papi ./application

The first collects timing statistics while the second also records hardware counters (compilation with PAPI is needed for the second). By default, the

statistics are emitted standard error when the program ends.

Tracing with Extrae

A trace.sh file can be used to include all the environment variables needed to get an instrumentation trace of the execution. The content of this file is as

follows:

#!/bin/bash

export EXTRAE_CONFIG_FILE=extrae.xml

export NANOS6="extrae"

$*

Additionally, you will need to change your running script in order to invoke the program through this trace.sh script so that it looks like:

./trace.sh ./application

Although you can also edit your running script adding all the environment variables related with the instrumentation, it is preferable to use this extra script

to easily change between instrumented and non-instrumented executions. When in need to instrument your execution, simply include trace.sh before the

program invocation. Note that the extrae.xml file, which is used to configure the Extrae library to get a Paraver trace, is also needed.

A Step-By-Step Detailed Guide to Execute the Multisaxpy Benchmark (OmpSs-2)

Users must clone/download this example's repository from ?https://pm.bsc.es/gitlab/ompss-2/examples/multisaxpy and transfer it to a DEEP working

directory.

Description

This benchmark runs several SAXPY operations. SAXPY is a combination of scalar multiplication and vector addition (a common operation in

computations with vector processors) and constitutes a level 1 operation in the Basic Linear Algebra Subprograms (BLAS) package.

There are 7 implementations of this benchmark.

Execution Instructions

./multisaxpy SIZE BLOCK_SIZE INTERATIONS

where:

https://pm.bsc.es/gitlab/ompss-2/examples/multisaxpy


WikiPrint - from Polar Technologies

4

• SIZE is the number of elements of the vectors used on the SAXPY operation.

• The SAXPY operation will be applied to the vector in blocks that contains BLOCK_SIZE elements.

• ITERATIONS is the number of times the SAXPY operation is executed.

Downloading, Building and Executing this Benchmark

Clone the repository to your local machine:

git clone https://pm.bsc.es/gitlab/ompss-2/examples/multisaxpy

and upload it to the /work/cdeep/USERNAME/ directory (which might not exist yet) of the DEEP cluster:

scp -r multisaxpy/ USERNAME@deep.fz-juelich.de:~/work/cdeep/USERNAME/

Now connect to the DEEP login node:

ssh -X USERNAME@deep.fz-juelich.de

and from there open the multisaxpy folder:

cd /work/cdeep/USERNAME/multisaxpy

and request an interactive cluster module (CM) node in order to use all the available 48 threads to run a pure OmpSs-2 application:

srun -p dp-cn -N 1 -n 1 -c 48 --pty /bin/bash -i

Load the OmpSs-2 module via the following commands:

modulepath="/usr/local/software/skylake/Stages/2018b/modules/all/Core:$modulepath"

modulepath="/usr/local/software/skylake/Stages/2018b/modules/all/Compiler/mpi/intel/2019.0.117-GCC-7.3.0:$modulepath"

modulepath="/usr/local/software/skylake/Stages/2018b/modules/all/MPI/intel/2019.0.117-GCC-7.3.0/psmpi/5.2.1-1-mt:$modulepath"

export MODULEPATH="$modulepath:$MODULEPATH"

module load OmpSs-2

and check the affinity via the command srun numactly --show which should report the following:

$ srun numactly --show

policy: default

preferred node: current

physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 

cpubind: 0 1 

nodebind: 0 1 

membind: 0 1 

Now you should be able to clean, build and execute this benchmark via the command make:

$ make clean 

rm -f 01.multisaxpy_seq 02.multisaxpy_task_loop 03.multisaxpy_task 04.multisaxpy_task+dep 05.multisaxpy_task+weakdep 06.multisaxpy_task_loop+weakdep 07.multisaxpy_task+reduction 

 

$ make 

mcxx --ompss-2 01.multisaxpy_seq.cpp main.cpp -o 01.multisaxpy_seq -lrt 

mcxx --ompss-2 02.multisaxpy_task_loop.cpp main.cpp -o 02.multisaxpy_task_loop -lrt 

mcxx --ompss-2 03.multisaxpy_task.cpp main.cpp -o 03.multisaxpy_task -lrt 

03.multisaxpy_task.cpp:3:13: info: adding task function 'axpy_task' for device 'smp' 

03.multisaxpy_task.cpp:12:3: info: call to task function '::axpy_task' 

03.multisaxpy_task.cpp:3:13: info: task function declared here 

mcxx --ompss-2 04.multisaxpy_task+dep.cpp main.cpp -o 04.multisaxpy_task+dep -lrt



WikiPrint - from Polar Technologies

5

04.multisaxpy_task+dep.cpp:3:13: info: adding task function 'axpy_task' for device 'smp' 

04.multisaxpy_task+dep.cpp:12:3: info: call to task function '::axpy_task' 

04.multisaxpy_task+dep.cpp:3:13: info: task function declared here 

mcxx --ompss-2 05.multisaxpy_task+weakdep.cpp main.cpp -o 05.multisaxpy_task+weakdep -lrt 

05.multisaxpy_task+weakdep.cpp:3:13: info: adding task function 'axpy_task' for device 'smp' 

05.multisaxpy_task+weakdep.cpp:12:3: info: call to task function '::axpy_task' 

05.multisaxpy_task+weakdep.cpp:3:13: info: task function declared here 

mcxx --ompss-2 06.multisaxpy_task_loop+weakdep.cpp main.cpp -o 06.multisaxpy_task_loop+weakdep -lrt 

mcxx --ompss-2 07.multisaxpy_task+reduction.cpp main.cpp -o 07.multisaxpy_task+reduction -lrt 

07.multisaxpy_task+reduction.cpp:14:13: info: reduction of variable 'yy' of type 'double [elements]' solved to 'operator +' 

<openmp-builtin-reductions>:1:1: info: reduction declared here 

07.multisaxpy_task+reduction.cpp:21:13: info: reduction of variable 'y' of type 'double [N]' solved to 'operator +' 

<openmp-builtin-reductions>:1:1: info: reduction declared here 

 

$ make run 

./01.multisaxpy_seq 16777216 8192 100 

size: 16777216, bs: 8192, iterations: 100, time: 3.30132, performance: 0.508197 

NANOS6_SCHEDULER=fifo ./02.multisaxpy_task_loop 16777216 8192 100 

size: 16777216, bs: 8192, iterations: 100, time: 0.411888, performance: 4.07325 

./03.multisaxpy_task 16777216 8192 100 

size: 16777216, bs: 8192, iterations: 100, time: 0.648536, performance: 2.58694 

./04.multisaxpy_task+dep 16777216 8192 100 

size: 16777216, bs: 8192, iterations: 100, time: 1.04207, performance: 1.60998 

./05.multisaxpy_task+weakdep 16777216 8192 100 

size: 16777216, bs: 8192, iterations: 100, time: 1.09049, performance: 1.5385 

NANOS6_SCHEDULER=fifo ./06.multisaxpy_task_loop+weakdep 16777216 8192 100 

size: 16777216, bs: 8192, iterations: 100, time: 8.91, performance: 0.188296 

./07.multisaxpy_task+reduction 16777216 8192  100 

size: 16777216, bs: 8192, iterations: 100, time: 7.03558, performance: 0.238462

Override the Number of Threads Used

Let's have a closer look at the third implementation, i.e. 03.multisaxpy_task, which took 0.648536 seconds to finish using 48 threads. Remember that a

full CM node features 48 threads (0-47) divided in two sockets: 0-11,24-35 for the first socket and 12-23,36-47 for the second socket. Notice that they

are indeed not consecutive!

We can change the threads used by OmpSs-2 with the Linux command taskset. For example, the command to run this binary with 24 threads

interleaved between the two sockets would be:

taskset -c 0-23 ./03.multisaxpy_task 16777216 8192 100

Similarly, to run this benchmark using all the 24 threads of the second socket use the following command:

taskset -c 12-23,36-47 ./03.multisaxpy_task 16777216 8192 100

You can also try to run this example with only 12 threads of the first socket:

taskset -c 0-11 ./03.multisaxpy_task 16777216 8192 100

or 12 threads interleaved between the two sockets:

taskset -c 0-5,12-17 ./03.multisaxpy_task 16777216 8192 100

Changing the number of threads assigned to OmpSs-2 affects the performance of the application and not necessarily in a negative way, e.g. see below:

$ ./03.multisaxpy_task 16777216 8192 100 

size: 16777216, bs: 8192, iterations: 100, time: 0.653537, performance: 2.56714 

$ taskset -c 0-23 ./03.multisaxpy_task 16777216 8192 100 

size: 16777216, bs: 8192, iterations: 100, time: 0.686265, performance: 2.44471 

$ taskset -c 12-23,36-47 ./03.multisaxpy_task 16777216 8192 100 

size: 16777216, bs: 8192, iterations: 100, time: 0.650363, performance: 2.57967 

$ taskset -c 0-11 ./03.multisaxpy_task 16777216 8192 100



WikiPrint - from Polar Technologies

6

size: 16777216, bs: 8192, iterations: 100, time: 0.55417, performance: 3.02745 

$ taskset -c 0-5,12-17 ./03.multisaxpy_task 16777216 8192 100 

size: 16777216, bs: 8192, iterations: 100, time: 0.705859, performance: 2.37685

Creating a Dependency Graph

Let's continue with the same example used above and create a dependency graph using only 12 threads of one socket (e.g. the second), which

demonstrated to be the affinity giving the best results. Furthermore, we are not longer interested in running 100 iterations (nor using a large number of

elements) for graph purposes and hence only one iteration will suffice to generate a complete graph of this application. Run the following command:

NANOS6=graph taskset -c 12-23 ./03.multisaxpy_task 196608 8192 1

Once it has finished it should have created a script with the name graph-XXXXX-YYYYYYYYY-script.sh and a directory

graph-XXXXX-YYYYYYYYY-components. Execute said script by typing the following (note that it requires the tool dot):

bash graph-XXXXX-YYYYYYYYY-script.sh

to merge the intermediate results into a single PDF file which should look like this:

which illustrates 24 tasks executed in parallel using 12 threads.

Obtaining statistics

The visual execution of tasks can be further complemented with statistics. Executing the following command:

NANOS6=stats taskset -c 12-23 ./03.multisaxpy_task 196608 8192 1

will give you the information below:

$ NANOS6=stats taskset -c 12-23 ./03.multisaxpy_task 196608 8192 1 

size: 196608, bs: 8192, iterations: 1, time: 0.000241, performance: 0.815801 

STATS        Total CPUs        12 

STATS        Total time        2.42573e+07        ns 

STATS        Total threads        12 

STATS        Mean threads per CPU        1 

STATS        Mean tasks per thread        2.08333 

 

STATS        Mean thread lifetime        3.65355e+09        % 

STATS        Mean thread running time        100        % 

STATS        Mean effective parallelism        0.123268 

 

STATS        All Tasks instances        25 

STATS        All Tasks mean instantiation time        1445        ns        0.885064        % 

STATS        All Tasks mean pending time        0        ns        0        % 

STATS        All Tasks mean ready time        32446        ns        19.8732        % 

STATS        All Tasks mean execution time        119605        ns        73.2582        % 

STATS        All Tasks mean blocked time        3702        ns        2.26748        % 

STATS        All Tasks mean zombie time        6067        ns        3.71604        % 

STATS        All Tasks mean lifetime        163265        ns 

 

STATS        03.multisaxpy_task.cpp:3:13 instances        24 

STATS        03.multisaxpy_task.cpp:3:13 mean instantiation time        1251        ns        1.75051        % 

STATS        03.multisaxpy_task.cpp:3:13 mean pending time        0        ns        0        % 

STATS        03.multisaxpy_task.cpp:3:13 mean ready time        32944        ns        46.0981        % 

STATS        03.multisaxpy_task.cpp:3:13 mean execution time        31079        ns        43.4884        % 

STATS        03.multisaxpy_task.cpp:3:13 mean blocked time        0        ns        0        % 

STATS        03.multisaxpy_task.cpp:3:13 mean zombie time        6191        ns        8.66298        % 

STATS        03.multisaxpy_task.cpp:3:13 mean lifetime        71465        ns 

 

STATS        main instances        1 

STATS        main mean instantiation time        6089        ns        0.2573        %



WikiPrint - from Polar Technologies

7

STATS        main mean pending time        0        ns        0        % 

STATS        main mean ready time        20505        ns        0.866471        % 

STATS        main mean execution time        2244241        ns        94.8339        % 

STATS        main mean blocked time        92553        ns        3.91097        % 

STATS        main mean zombie time        3108        ns        0.131333        % 

STATS        main mean lifetime        2366496        ns 

 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 instances        24 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 mean instantiation time        1251        ns        1.75051        % 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 mean pending time        0        ns        0        % 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 mean ready time        32944        ns        46.0981        % 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 mean execution time        31079        ns        43.4884        % 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 mean blocked time        0        ns        0        % 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 mean zombie time        6191        ns        8.66298        % 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 mean lifetime        71465        ns 

 

STATS        Phase 1 instances        24 

STATS        Phase 1 mean instantiation time        1251        ns        1.75051        % 

STATS        Phase 1 mean pending time        0        ns        0        % 

STATS        Phase 1 mean ready time        32944        ns        46.0981        % 

STATS        Phase 1 mean execution time        31079        ns        43.4884        % 

STATS        Phase 1 mean blocked time        0        ns        0        % 

STATS        Phase 1 mean zombie time        6191        ns        8.66298        % 

STATS        Phase 1 mean lifetime        71465        ns 

STATS        Phase 1 effective parallelism        0.165278

Additionally, you can get information related to hardware counters via PAPI. For this, firstly load the PAPI module:

module load PAPI/5.6.0

and then execute:

NANOS6=stats-papi taskset -c 12-23 ./03.multisaxpy_task 196608 8192 1

to get statistics:

$ NANOS6=stats-papi taskset -c 12-23 ./03.multisaxpy_task 196608 8192 1 

size: 196608, bs: 8192, iterations: 1, time: 0.000236, performance: 0.833085 

STATS        Total CPUs        12 

STATS        Total time        3.06985e+07        ns 

STATS        Total threads        12 

STATS        Mean threads per CPU        1 

STATS        Mean tasks per thread        2.08333 

 

STATS        Mean thread lifetime        2.88807e+09        % 

STATS        Mean thread running time        100        % 

STATS        Mean effective parallelism        0.13271 

 

STATS        All Tasks instances        25 

STATS        All Tasks mean instantiation time        2708        ns        1.52238        % 

STATS        All Tasks mean pending time        0        ns        0        % 

STATS        All Tasks mean ready time        9032        ns        5.07761        % 

STATS        All Tasks mean execution time        162959        ns        91.6123        % 

STATS        All Tasks mean blocked time        1105        ns        0.621209        % 

STATS        All Tasks mean zombie time        2075        ns        1.16652        % 

STATS        All Tasks mean lifetime        177879        ns 

STATS        All Tasks Real frequency        0.658047        GHz 

STATS        All Tasks Virtual frequency        0.782649        GHz 

STATS        All Tasks IPC        1.66625 

STATS        All Tasks L2 data cache miss ratio        3.203 

STATS        All Tasks Real nsecs        3804026        nsecs



WikiPrint - from Polar Technologies

8

STATS        All Tasks Virtual nsecs        3198406        nsecs 

STATS        All Tasks Instructions        4171011        instructions 

STATS        All Tasks Total cycles        2503229 

STATS        All Tasks Instr completed        4171011 

STATS        All Tasks L2D cache accesses        16754 

STATS        All Tasks L2D cache misses        53663 

STATS        All Tasks Reference cycles        2054784 

 

STATS        03.multisaxpy_task.cpp:3:13 instances        24 

STATS        03.multisaxpy_task.cpp:3:13 mean instantiation time        2498        ns        4.60435        % 

STATS        03.multisaxpy_task.cpp:3:13 mean pending time        0        ns        0        % 

STATS        03.multisaxpy_task.cpp:3:13 mean ready time        8237        ns        15.1826        % 

STATS        03.multisaxpy_task.cpp:3:13 mean execution time        41452        ns        76.405        % 

STATS        03.multisaxpy_task.cpp:3:13 mean blocked time        0        ns        0        % 

STATS        03.multisaxpy_task.cpp:3:13 mean zombie time        2066        ns        3.80808        % 

STATS        03.multisaxpy_task.cpp:3:13 mean lifetime        54253        ns 

STATS        03.multisaxpy_task.cpp:3:13 Real frequency        3.16748        GHz 

STATS        03.multisaxpy_task.cpp:3:13 Virtual frequency        3.18873        GHz 

STATS        03.multisaxpy_task.cpp:3:13 IPC        1.72954 

STATS        03.multisaxpy_task.cpp:3:13 L2 data cache miss ratio        3.96831 

STATS        03.multisaxpy_task.cpp:3:13 Real nsecs        755566        nsecs 

STATS        03.multisaxpy_task.cpp:3:13 Virtual nsecs        750532        nsecs 

STATS        03.multisaxpy_task.cpp:3:13 Instructions        4139211        instructions 

STATS        03.multisaxpy_task.cpp:3:13 Total cycles        2393243 

STATS        03.multisaxpy_task.cpp:3:13 Instr completed        4139211 

STATS        03.multisaxpy_task.cpp:3:13 L2D cache accesses        13316 

STATS        03.multisaxpy_task.cpp:3:13 L2D cache misses        52842 

STATS        03.multisaxpy_task.cpp:3:13 Reference cycles        1964416 

 

STATS        main instances        1 

STATS        main mean instantiation time        7755        ns        0.246588        % 

STATS        main mean pending time        0        ns        0        % 

STATS        main mean ready time        28131        ns        0.894488        % 

STATS        main mean execution time        3079121        ns        97.9076        % 

STATS        main mean blocked time        27636        ns        0.878749        % 

STATS        main mean zombie time        2284        ns        0.0726249        % 

STATS        main mean lifetime        3144927        ns 

STATS        main Real frequency        0.0360792        GHz 

STATS        main Virtual frequency        0.0449312        GHz 

STATS        main IPC        0.289128 

STATS        main L2 data cache miss ratio        0.238802 

STATS        main Real nsecs        3048460        nsecs 

STATS        main Virtual nsecs        2447874        nsecs 

STATS        main Instructions        31800        instructions 

STATS        main Total cycles        109986 

STATS        main Instr completed        31800 

STATS        main L2D cache accesses        3438 

STATS        main L2D cache misses        821 

STATS        main Reference cycles        90368 

 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 instances        24 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 mean instantiation time        2498        ns        4.60435        % 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 mean pending time        0        ns        0        % 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 mean ready time        8237        ns        15.1826        % 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 mean execution time        41452        ns        76.405        % 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 mean blocked time        0        ns        0        % 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 mean zombie time        2066        ns        3.80808        % 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 mean lifetime        54253        ns 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 Real frequency        3.16748        GHz 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 Virtual frequency        3.18873        GHz 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 IPC        1.72954 



WikiPrint - from Polar Technologies

9

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 L2 data cache miss ratio        3.96831 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 Real nsecs        755566        nsecs 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 Virtual nsecs        750532        nsecs 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 Instructions        4139211        instructions 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 Total cycles        2393243 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 Instr completed        4139211 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 L2D cache accesses        13316 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 L2D cache misses        52842 

STATS        Phase 1 03.multisaxpy_task.cpp:3:13 Reference cycles        1964416 

 

STATS        Phase 1 instances        24 

STATS        Phase 1 mean instantiation time        2498        ns        4.60435        % 

STATS        Phase 1 mean pending time        0        ns        0        % 

STATS        Phase 1 mean ready time        8237        ns        15.1826        % 

STATS        Phase 1 mean execution time        41452        ns        76.405        % 

STATS        Phase 1 mean blocked time        0        ns        0        % 

STATS        Phase 1 mean zombie time        2066        ns        3.80808        % 

STATS        Phase 1 mean lifetime        54253        ns 

STATS        Phase 1 Real frequency        3.16748        GHz 

STATS        Phase 1 Virtual frequency        3.18873        GHz 

STATS        Phase 1 IPC        1.72954 

STATS        Phase 1 L2 data cache miss ratio        3.96831 

STATS        Phase 1 Real nsecs        755566        nsecs 

STATS        Phase 1 Virtual nsecs        750532        nsecs 

STATS        Phase 1 Instructions        4139211        instructions 

STATS        Phase 1 Total cycles        2393243 

STATS        Phase 1 Instr completed        4139211 

STATS        Phase 1 L2D cache accesses        13316 

STATS        Phase 1 L2D cache misses        52842 

STATS        Phase 1 Reference cycles        1964416 

STATS        Phase 1 effective parallelism        0.217033

Tracing with Extrae

THIS SECTION IS WORK IN PROGRESS, PLEASE IGNORE IT

To get traces of this benchmark using Extrae firstly load the corresponding module:

module load Extrae/3.6.1

and charge the Extrae environment in your active session:

source /usr/local/software/skylake/Stages/2018b/software/Extrae/3.6.1-ipsmpi-2018b-mt/etc/extrae.sh

Then copy a preconfigured extrae.xml file to instrument OmpSs-2 to your current working directory multisaxpy/:

cp /usr/local/software/skylake/Stages/2018b/software/Extrae/3.6.1-ipsmpi-2018b-mt/share/example/OMPSS/extrae.xml

.

The next step is to create a new file trace.sh:

touch trace.sh

with the necessary permission to be executed:

chmod +x trace.sh

and fill it with the following text:

#!/bin/bash 

export EXTRAE_CONFIG_FILE=extrae.xml 

export NANOS6="extrae"



WikiPrint - from Polar Technologies

10

$*

Now execute the benchmark keeping its original size but only 20 iterations with the following command:

taskset -c 12-23 ./trace.sh ./03.multisaxpy_task 16777216 8192 20

References

• ?https://pm.bsc.es/gitlab/ompss-2/examples/multisaxpy

• ?https://pm.bsc.es/ftp/ompss-2/doc/examples/local/sphinx/03-fundamentals.html

• ?https://en.wikipedia.org/wiki/AXPY

Dot-product Benchmark (OmpSs-2)

Users must clone/download this example's repository from ?https://pm.bsc.es/gitlab/ompss-2/examples/dot-product and transfer it to a DEEP working

directory.

Description

This benchmark runs a dot-product operation. The dot-product (also known as scalar product) is an algebraic operation that takes two equal-length

sequences of numbers and returns a single number.

There are 3 implementations of this benchmark.

Execution Instructions

./dot_product SIZE CHUNK_SIZE

where:

• SIZE is the number of elements of the vectors used on the dot-product operation.

• The dot-product operation will be applied to the vector in blocks that contains CHUNK_SIZE elements.

References

• ?https://pm.bsc.es/gitlab/ompss-2/examples/dot-product

• ?https://en.wikipedia.org/wiki/Dot_product

Mergesort Benchmark (OmpSs-2)

Users must clone/download this example's repository from ?https://pm.bsc.es/gitlab/ompss-2/examples/mergesort and transfer it to a DEEP working

directory.

Description

This benchmark is a recursive sorting algorithm based on comparisons.

There are 6 implementations of this benchmark.

Execution Instructions

./mergesort N BLOCK_SIZE

where:

• N is the number of elements to be sorted. Mandatory for all versions of this benchmark.

https://pm.bsc.es/gitlab/ompss-2/examples/multisaxpy
https://pm.bsc.es/ftp/ompss-2/doc/examples/local/sphinx/03-fundamentals.html
https://en.wikipedia.org/wiki/AXPY
https://pm.bsc.es/gitlab/ompss-2/examples/dot-product
https://pm.bsc.es/gitlab/ompss-2/examples/dot-product
https://en.wikipedia.org/wiki/Dot_product
https://pm.bsc.es/gitlab/ompss-2/examples/mergesort


WikiPrint - from Polar Technologies

11

• BLOCK_SIZE is used to determine the threshold when the task becomes final. If the array size is less or equal than BLOCK_SIZE, the task will

become final, so no more tasks will be created inside it. Mandatory for all versions of this benchmark.

References

• ?https://pm.bsc.es/gitlab/ompss-2/examples/mergesort

• ?https://en.wikipedia.org/wiki/Merge_sort

Nqueens Benchmark (OmpSs-2)

Users must clone/download this example's repository from ?https://pm.bsc.es/gitlab/ompss-2/examples/nqueens and transfer it to a DEEP working

directory.

Description

This benchmark computes, for a NxN chessboard, the number of configurations of placing N chess queens in the chessboard such that none of them is

able to attack any other. It is implemented using a branch-and-bound algorithm.

There are 7 implementations of this benchmark.

Execution Instructions

./n-queens N [threshold]

where:

• N is the chessboard's size. Mandatory for all versions of this benchmark.

• threshold is the number of rows of the chessboard that will generate tasks.

The remaining rows (N - threshold) will not generate tasks and will be executed in serial mode. Mandatory from all versions of this benchmark except

from 01 (sequential version) and 02 (fully parallel version).

References

• ?https://pm.bsc.es/gitlab/ompss-2/examples/nqueens

• ?https://en.wikipedia.org/wiki/Eight_queens_puzzle

Matmul Benchmark (OmpSs-2)

Users must clone/download this example's repository from ?https://pm.bsc.es/gitlab/ompss-2/examples/matmul and transfer it to a DEEP working

directory.

Description

This benchmark runs a matrix multiplication operation C = A?B, where A has size N?M, B has size M?P, and the resulting matrix C has size N?P.

There are 3 implementations of this benchmark.

Execution Instructions

./matmul N M P BLOCK_SIZE

where:

• N is the number of rows of the matrix A.

• M is the number of columns of the matrix A and the number of rows of the matrix B.

• P is the number of columns of the matrix B.

• The matrix multiplication operation will be applied in blocks that contains BLOCK_SIZE?BLOCK_SIZE elements.

https://pm.bsc.es/gitlab/ompss-2/examples/mergesort
https://en.wikipedia.org/wiki/Merge_sort
https://pm.bsc.es/gitlab/ompss-2/examples/nqueens
https://pm.bsc.es/gitlab/ompss-2/examples/nqueens
https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://pm.bsc.es/gitlab/ompss-2/examples/matmul


WikiPrint - from Polar Technologies

12

References

• ?https://pm.bsc.es/gitlab/ompss-2/examples/matmul

• ?https://pm.bsc.es/ftp/ompss-2/doc/examples/local/sphinx/02-examples.html

• ?https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm

Cholesky Benchmark (OmpSs-2+MKL)

Users must clone/download this example's repository from ?https://pm.bsc.es/gitlab/ompss-2/examples/cholesky and transfer it to a DEEP working

directory.

Description

This benchmark is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose. This

Cholesky decomposition is carried out with OmpSs-2 using tasks with priorities.

There are 3 implementations of this benchmark.

The code uses the CBLAS and LAPACKE interfaces to both BLAS and LAPACK. By default we try to find MKL, ATLAS and LAPACKE from the

MKLROOT, LIBRARY_PATH and C_INCLUDE_PATH environment variables. If you are using an implementation with other linking requirements, please

edit the LIBS entry in the makefile accordingly.

The Makefile has three additional rules:

• run: runs each version one after the other.

• run-graph: runs the OmpSs-2 versions with the graph instrumentation.

• run-extrae: runs the OmpSs-2 versions with the extrae instrumentation.

For the graph instrumentation, it is recommended to view the resulting PDF in single page mode and to advance through the pages. This will show the

actual instantiation and execution of the code. For the extrae instrumentation, extrae must be loaded and available at least through the

LD_LIBRARY_PATH environment variable.

Execution Instructions

./cholesky SIZE BLOCK_SIZE

where:

• SIZE is the number of elements per side of the matrix.

• The decomposition is made by blocks of BLOCK_SIZE by BLOCK_SIZE elements.

References

• ?https://pm.bsc.es/gitlab/ompss-2/examples/cholesky

• ?https://pm.bsc.es/ftp/ompss-2/doc/examples/02-examples/cholesky-mkl/README.html

• ?https://en.wikipedia.org/wiki/Eight_queens_puzzle

Nbody Benchmark (MPI+OmpSs-2+TAMPI)

Users must clone/download this example's repository from ?https://pm.bsc.es/gitlab/ompss-2/examples/nbody and transfer it to a DEEP working

directory.

Description

This benchmark represents an N-body simulation to numerically approximate the evolution of a system of bodies in which each body continuously

interacts with every other body. A familiar example is an astrophysical simulation in which each body represents a galaxy or an individual star, and the

bodies attract each other through the gravitational force.

https://pm.bsc.es/gitlab/ompss-2/examples/matmul
https://pm.bsc.es/ftp/ompss-2/doc/examples/local/sphinx/02-examples.html
https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm
https://pm.bsc.es/gitlab/ompss-2/examples/cholesky
https://pm.bsc.es/gitlab/ompss-2/examples/cholesky
https://pm.bsc.es/ftp/ompss-2/doc/examples/02-examples/cholesky-mkl/README.html
https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://pm.bsc.es/gitlab/ompss-2/examples/nbody


WikiPrint - from Polar Technologies

13

There are 7 implementations of this benchmark which are compiled in different binaries by executing the command make. These versions can be

blocking, when the particle space is divided into smaller blocks, or non-blocking, when it is not.

The interoperability versions (MPI+OmpSs-2+TAMPI) are compiled only if the environment variable TAMPI_HOME is set to the Task-Aware MPI (TAMPI)

library's installation directory.

Execution Instructions

The binaries accept several options. The most relevant options are the number of total particles (-p) and the number of timesteps (-t). More options can

be seen with the -h option. An example of execution could be:

mpiexec -n 4 -bind-to hwthread:16 ./nbody -t 100 -p 8192

in which the application will perform 100 timesteps in 4 MPI processes with 16 hardware threads in each process (used by the OmpSs-2 runtime). The

total number of particles will be 8192 so that each process will have 2048 particles (2 blocks per process).

References

• ?https://pm.bsc.es/gitlab/ompss-2/examples/nbody

• ?https://en.wikipedia.org/wiki/N-body_simulation

Heat Benchmark (MPI+OmpSs-2+TAMPI)

Users must clone/download this example's repository from ?https://pm.bsc.es/gitlab/ompss-2/examples/heat and transfer it to a DEEP working directory.

Description

This benchmark uses an iterative Gauss-Seidel method to solve the heat equation, which is a parabolic partial differential equation that describes the

distribution of heat (or variation in temperature) in a given region over time. The heat equation is of fundamental importance in a wide range of science

fields. In mathematics, it is the parabolic partial differential equation par excellence. In statistics, it is related to the study of the Brownian motion. Also, the

diffusion equation is a generic version of the heat equation, and it is related to the study of chemical diffusion processes.

There are 9 implementations of this benchmark which are compiled in different binaries by executing the command make.

The interoperability versions (MPI+OmpSs-2+TAMPI) are compiled only if the environment variable TAMPI_HOME is set to the Task-Aware MPI (TAMPI)

library's installation directory.

Execution Instructions

The binaries accept several options. The most relevant options are the size of the matrix in each dimension (-s) and the number of timesteps (-t). More

options can be seen with the -h option. An example of execution could be:

mpiexec -n 4 -bind-to hwthread:16 ./heat -t 150 -s 8192

in which the application will perform 150 timesteps in 4 MPI processes with 16 hardware threads in each process (used by the OmpSs-2 runtime). The

size of the matrix in each dimension will be 8192 (81922 elements in total), this means that each process will have 2048x8192 elements (16 blocks per

process).

References

• ?https://pm.bsc.es/gitlab/ompss-2/examples/heat

• ?https://pm.bsc.es/ftp/ompss-2/doc/examples/local/sphinx/04-mpi+ompss-2.html

• ?https://en.wikipedia.org/wiki/Heat_equation

Krist Benchmark (OmpSs-2+CUDA)

Users must clone/download this example's repository from ?https://pm.bsc.es/gitlab/ompss-2/examples/krist and transfer it to a DEEP working directory.

https://pm.bsc.es/gitlab/ompss-2/examples/nbody
https://en.wikipedia.org/wiki/N-body_simulation
https://pm.bsc.es/gitlab/ompss-2/examples/heat
https://pm.bsc.es/gitlab/ompss-2/examples/heat
https://pm.bsc.es/ftp/ompss-2/doc/examples/local/sphinx/04-mpi+ompss-2.html
https://en.wikipedia.org/wiki/Heat_equation
https://pm.bsc.es/gitlab/ompss-2/examples/krist


WikiPrint - from Polar Technologies

14

Description

This benchmark represents the krist kernel, which is used in crystallography to find the exact shape of a molecule using Rntgen diffraction on single

crystals or powders.

There are 2 implementations of this benchmark, krist and krist-unified using regular and unified CUDA memory, repectively.

Execution Instructions

./krist N_A N_R

where:

• N_A is the number of atoms (1000 by default).

• N_R is the umber of reflections (10000 by default).

References

• ?https://pm.bsc.es/gitlab/ompss-2/examples/krist

https://pm.bsc.es/gitlab/ompss-2/examples/krist

	Programming with OmpSs-2
	Quick Overview
	Quick Setup on DEEP System for a Pure OmpSs-2 Application
	Using the Repositories
	System Configuration
	Building and Running the Examples
	Controlling the Available Threads
	Creating Dependency Graphs
	Obtaining Statistics
	Tracing with Extrae

	A Step-By-Step Detailed Guide to Execute the Multisaxpy Benchmark (OmpSs-2)
	Description
	Execution Instructions
	Downloading, Building and Executing this Benchmark
	Override the Number of Threads Used
	Creating a Dependency Graph
	Obtaining statistics
	Tracing with Extrae
	References

	Dot-product Benchmark (OmpSs-2)
	Description
	Execution Instructions
	References

	Mergesort Benchmark (OmpSs-2)
	Description
	Execution Instructions
	References

	Nqueens Benchmark (OmpSs-2)
	Description
	Execution Instructions
	References

	Matmul Benchmark (OmpSs-2)
	Description
	Execution Instructions
	References

	Cholesky Benchmark (OmpSs-2+MKL)
	Description
	Execution Instructions
	References

	Nbody Benchmark (MPI+OmpSs-2+TAMPI)
	Description
	Execution Instructions
	References

	Heat Benchmark (MPI+OmpSs-2+TAMPI)
	Description
	Execution Instructions
	References

	Krist Benchmark (OmpSs-2+CUDA)
	Description
	Execution Instructions
	References


