WikiPrint - from Polar Technologies

Programming with OmpSs-2

Table of contents:

e Quick Overview
e Quick Setup on DEEP System for a Pure OmpSs-2 Application

e Using the Repositories

e Examples:

« A Step-By-Step Detailed Guide to Execute the Multisaxpy Benchmark (OmpSs-2)

+ Dot-product Benchmark (OmpSs-2)

+ Mergesort Benchmark (OmpSs-2)

¢ Ngueens Benchmark (OmpSs-2)

« Matmul Benchmark (OmpSs-2)

* Cholesky Nenchmark (OmpSs-2+MKL)

+ Nbody Nenchmark (MP1+OmpSs-2+TAMPI)
« Heat Benchmark (MPI+OmpSs-2+TAMPI)

Quick Overview

OmpSs-2 is a programming model composed of a set of directives and library routines that can be used in conjunction with a high-level programming
language (such as C, C++ or Fortran) in order to develop concurrent applications. Its name originally comes from two other programming models:
OpenMP and StarSs. The design principles of these two programming models constitute the fundamental ideas used to conceive the OmpSs
philosophy.

OmpSs-2 thread-pool execution model differs from the fork-join parallelism implemented in OpenMP.

A task is the minimum execution entity that can be managed independently by the runtime scheduler. Task dependences let the user annotate the data
flow of the program and are used to determine, at runtime, if the parallel execution of two tasks may cause data races.

The reference implementation of OmpSs-2 is based on the Mercurium source-to-source compiler and the Nanos6 runtime library:

* Mercurium source-to-source compiler provides the necessary support for transforming the high-level directives into a parallelized version of the
application.

« Nanos6 runtime library provides services to manage all the parallelism in the user-application, including task creation, synchronization and data
movement, as well as support for resource heterogeneity.

Additional information about the OmpSs-2 programming model can be found at:

* OmpSs-2 official website. ?https://pm.bsc.es/ompss-2

* OmpSs-2 specification. ?https://pm.bsc.es/ftp/ompss-2/doc/spec

* OmpSs-2 user guide. ?https://pm.bsc.es/ftp/ompss-2/doc/user-guide

* OmpSs-2 examples repository. 2https://pm.bsc.es/gitlab/ompss-2/examples

¢ OmpSs-2 manual with examples and exercises. 2https://pm.bsc.es/ftp/ompss-2/doc/examples/index.html

» Mercurium official website. ?Link 1, ?Link 2

* Nanos official website. ?Link 1, ?Link 2

Quick Setup on DEEP System for a Pure OmpSs-2 Application

We highly recommend to interactively log in a cluster module (CM) node to begin using OmpSs-2. To request an entire CM node for an interactive
session, please execute the following command to use all the 48 available threads:

srun -p dp-cn -N1 -n 1 -c 48 --pty /bin/bash -i
Note that the command above is consistent with the actual hardware configuration of the cluster module with hyper-threading enabled.

OmpSs-2 has already been installed on DEEP and can be used by simply executing the following commands:

https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#QuickOverview
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#QuickSetuponDEEPSystemforaPureOmpSs-2Application
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#UsingtheRepositories
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#AStep-By-StepDetailedGuidetoExecutetheMultisaxpyBenchmarkOmpSs-2
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#Dot-productBenchmarkOmpSs-2
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#MergesortBenchmarkOmpSs-2
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#NqueensBenchmarkOmpSs-2
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#MatmulBenchmarkOmpSs-2
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#CholeskyBenchmarkOmpSs-2MKL
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#NbodyBenchmarkMPI+OmpSs-2TAMPI
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#HeatBenchmarkMPI+OmpSs-2TAMPI
https://pm.bsc.es/ompss-2
https://pm.bsc.es/ftp/ompss-2/doc/spec
https://pm.bsc.es/ftp/ompss-2/doc/user-guide
https://pm.bsc.es/gitlab/ompss-2/examples
https://pm.bsc.es/ftp/ompss-2/doc/examples/index.html
https://www.bsc.es/research-and-development/software-and-apps/software-list/mercurium-ccfortran-source-source-compiler
https://pm.bsc.es/mcxx
https://www.bsc.es/research-and-development/software-and-apps/software-list/nanos-rtl
https://pm.bsc.es/nanox

WikiPrint - from Polar Technologies

nmodul epat h="/usr /| ocal / sof t war e/ skyl ake/ St ages/ 2018b/ nodul es/ al | / Cor e: $nodul epat h"

nmodul epat h="/usr/ | ocal / sof t war e/ skyl ake/ St ages/ 2018b/ nodul es/ al | / Conpi | er/ npi /intel /2019. 0. 117- GCC 7. 3. 0: $nodul epat h"

nmodul epat h="/usr /| ocal / sof t war e/ skyl ake/ St ages/ 2018b/ nodul es/al | / MPI /i ntel /2019. 0. 117- GCC- 7. 3. 0/ psnpi / 5. 2. 1- 1- nt : $nodul epat

export MODULEPATH="$nodul epat h: $MODULEPATH'
nmodul e | oad OmpSs- 2

Remember that OmpSs-2 uses a thread-pool execution model which means that it permanently uses all the threads present on the system. Users are
strongly encouraged to always check the system affinity by running the NUMA command srun numact| --show

$ srun numact!| --show

policy: default

preferred node: current

physcpubind: 01 23 4567 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
cpubind: 0 1

nodebind: 0 1

menbind: 0 1

as well as the Nanos6 command srun nanos6-info --runtinme-details | grep List:

$ srun nanos6-info --runtinme-details | grep List
Initial CPU List 0-47

NUMA Node O CPU List 0-35

NUMA Node 1 CPU List 12-47

System affinity can be used to specify, for example, the ratio of MPl and OmpSs-2 processes for a hybrid application and can be modified by user
request in different ways:

» Viathe command srun or sal | oc. However, if the affinity given by SLURM does not correspond to the resources requested, it should be reported
to the system administrators.

¢ Viathe command nuract | .

e Viathe commandt askset .

Using the Repositories

All the examples shown here are publicly available at ?https://pm.bsc.es/gitlab/ompss-2/examples. Users must clone/download each example's
repository and then transfer it to a DEEP working directory.

System Configuration

Please refer to section Quick Setup on DEEP System to get a functional version of OmpSs-2 on DEEP. It is also recommended to run OmpSs-2 via an
interactive session on a cluster module (CM) node.

Building and Running the Examples

All the examples come with a Makefile already configured to build (e.g. make) and run (e.g. neke run) them. You can clean the directory with the
command neke cl ean.

Controlling the Available Threads

In order to limit or constraint the available threads for an application, the Unix taskset tool can be used to launch applications with a given thread affinity.
In order to use taskset, simply precede the application's binary with taskset followed by a list of CPU IDs specifying the desired affinity:

taskset -c 0,2-4 ./application

https://pm.bsc.es/gitlab/ompss-2/examples
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#QuickSetuponDEEPSystem

WikiPrint - from Polar Technologies

The example above will run application with 4 cores: 0, 2, 3, 4.
Creating Dependency Graphs

Nanos6 allows for a graphical representation of data dependencies to be extracted. In order to generate said graph, run the application with the NANOS6
environment variable set to graph:

NANCS6=gr aph ./ application
By default graph nodes will include the full path of the source code. To remove these, set the following environment variable:
NANGCS6_ GRAPH_SHORTEN_FI LENAMES=1

The result will be a PDF file with several pages, each representing the graph at a certain point in time. For best results, we suggest to display the PDF
with single page view, showing a full page and to advance page by page.

Obtaining Statistics

Another equally interesting feature of Nanos6 is obtaining statistics. To do so, simply run the application as:
NANCS6=st ats ./applicati on or also NANOS6=st at s- papi ./application

The first collects timing statistics while the second also records hardware counters (compilation with PAPI is needed for the second). By default, the
statistics are emitted standard error when the program ends.

Tracing with Extrae

A trace.sh file can be used to include all the environment variables needed to get an instrumentation trace of the execution. The content of this file is as
follows:

EXTRAE_CONFI G_FI LE=ext r ae. xm
NANCS6=
$~k

Additionally, you will need to change your running script in order to invoke the program through this trace.sh script. Although you can also edit your
running script adding all the environment variables related with the instrumentation, it is preferable to use this extra script to easily change between
instrumented and non-instrumented executions. When in need to instrument your execution, simply include trace.sh before the program invocation. Note
that the extrae.xml file, which is used to configure the Extrae library to get a Paraver trace, is also needed.

A Step-By-Step Detailed Guide to Execute the Multisaxpy Benchmark (OmpSs-2)

Users must clone/download this example's repository from 2https://pm.bsc.es/gitlab/ompss-2/examples/multisaxpy and transfer it to a DEEP working
directory.

Description

This benchmark runs several SAXPY operations. SAXPY is a combination of scalar multiplication and vector addition (a common operation in
computations with vector processors) and constitutes a level 1 operation in the Basic Linear Algebra Subprograms (BLAS) package.

There are 7 implementations of this benchmark.
Execution Instructions
./ mul tisaxpy SIZE BLOCK_SI ZE | NTERATI ONS

where:

« Sl ZE is the number of elements of the vectors used on the SAXPY operation.

* The SAXPY operation will be applied to the vector in blocks that contains BLOCK_SI ZE elements.

https://pm.bsc.es/gitlab/ompss-2/examples/multisaxpy

WikiPrint - from Polar Technologies

* | TERATI ONS is the number of times the SAXPY operation is executed.
Downloading, Building and Executing this Benchmark

Clone the repository to your local machine:

git clone https://pm bsc. es/gitlab/ onpss- 2/ exanpl es/ nul ti saxpy

and upload it to the /work/cdeep/USERNAME/ directory (which might not exist yet) of the DEEP cluster:

scp -r multisaxpy/ USERNAME@leep. fz-j uelich. de: ~/ wor k/ cdeep/ USERNAVE/

Now connect to the DEEP login node:

ssh - X USERNAME@leep. f z-j uel i ch. de

and from there open the multisaxpy

cd /wor k/ cdeep/ USERNAME/ mul ti saxpy

to request an interactive cluster module (CM) node in order to use all the available 48 threads to run a pure OmpSs-2 application:
srun -p dp-cn -N1 -n 1 -c 48 --pty /bin/bash -i

Load the OmpSs-2 module via the following commands:

nmodul epat h="/usr/I ocal / sof t war e/ skyl ake/ St ages/ 2018b/ nodul es/ al | / Cor e: $nodul epat h"

nodul epat h="/usr /| ocal / sof t war e/ skyl ake/ St ages/ 2018b/ nodul es/ al | / Conpi | er/ npi /i ntel /2019. 0. 117- GCC- 7. 3. 0: $nodul epat h"

nmodul epat h="/usr/| ocal / sof t war e/ skyl ake/ St ages/ 2018b/ nodul es/al | / MPI /i ntel / 2019. 0. 117- GCC- 7. 3. 0/ psnpi / 5. 2. 1- 1- nt : $nodul epat

export MODULEPATH="$nodul epat h: $MODULEPATH'
nmodul e | oad OmpSs- 2

and check the affinity via the command srun nunact |y --showwhich should report the following:

$ srun nunmactly --show

policy: default

preferred node: current

physcpubind: 01 23 4567 89 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

cpubind: 0 1
nodebind: 0 1
menbind: 0 1

Now you should be able to clean, build and execute this benchmark via the command nake:

$ make clean
rm-f O01.multisaxpy_seq 02. nul tisaxpy_task_|l oop 03. nultisaxpy_task 04.nultisaxpy_task+dep 05.nmultisaxpy_task+weakdep 06. mu

$ make

NCXXx --onpss-2 01.nul tisaxpy_seq.cpp main.cpp -o 01. multisaxpy_seq -Irt

ncxXx --onpss-2 02. nul tisaxpy_task_| oop.cpp main.cpp -o 02.nultisaxpy_task_|loop -Irt
ncxx --onpss-2 03.nul tisaxpy_task.cpp main.cpp -0 03.nultisaxpy_task -Irt

03. nul ti saxpy_task.cpp: 3:13: info: adding task function 'axpy_task' for device
03. nul ti saxpy_task.cpp:12:3: info: call to task function '::axpy_task

03. nul ti saxpy_task.cpp: 3:13: info: task function declared here

NCXX --onpss-2 04.nul tisaxpy_task+dep.cpp main.cpp -0 04.nultisaxpy_task+dep -Irt

04. mul ti saxpy_t ask+dep. cpp: 3: 13: info: adding task function 'axpy_task' for device 'snp
04. nul ti saxpy_t ask+dep. cpp: 12:3: info: call to task function '::axpy_task

snp

WikiPrint - from Polar Technologies

04. nmul ti saxpy_t ask+dep. cpp: 3: 13: info: task function declared here

NcxXx --onpss-2 05.nul tisaxpy_t ask+weakdep. cpp main. cpp -0 05. mul ti saxpy_t ask+weakdep -1rt

05. mul ti saxpy_t ask+weakdep. cpp: 3: 13: info: adding task function 'axpy_task' for device 'snp

05. nul ti saxpy_t ask+weakdep. cpp: 12: 3: info: call to task function '::axpy_task'

05. mul ti saxpy_t ask+weakdep. cpp: 3: 13: info: task function decl ared here

ncxx --onpss-2 06. nul tisaxpy_task_| oop+weakdep. cpp main.cpp -0 06.nul ti saxpy_task_| oop+weakdep -Irt

NCXXx --onpss-2 07.nmul tisaxpy_task+reduction.cpp main.cpp -o 07. nul ti saxpy_t ask+reduction -lrt

07. mul ti saxpy_task+reduction.cpp: 14:13: info: reduction of variable 'yy' of type 'double [elenents]' solved to 'operator +
<opennp-builtin-reductions>:1:1: info: reduction declared here

07. mul ti saxpy_task+reducti on. cpp: 21: 13: info: reduction of variable "y' of type 'double [N]' solved to 'operator +

<opennp-builtin-reductions>:1:1: info: reduction declared here

$ make run

./01. multi saxpy_seq 16777216 8192 100

size: 16777216, bs: 8192, iterations: 100, time: 3.30132, performance: 0.508197
NANCS6_SCHEDULER=fi fo ./02. nul ti saxpy_task_|l oop 16777216 8192 100

size: 16777216, bs: 8192, iterations: 100, time: 0.411888, perfornmance: 4.07325
.103. mul ti saxpy_task 16777216 8192 100

size: 16777216, bs: 8192, iterations: 100, tinme: 0.648536, perfornance: 2.58694
./ 04. mul ti saxpy_task+dep 16777216 8192 100

size: 16777216, bs: 8192, iterations: 100, tine: 1.04207, performance: 1.60998
./ 05. mul ti saxpy_t ask+weakdep 16777216 8192 100

size: 16777216, bs: 8192, iterations: 100, time: 1.09049, performance: 1.5385
NANOS6_SCHEDULER=fi fo ./06. nul ti saxpy_t ask_| oop+weakdep 16777216 8192 100

size: 16777216, bs: 8192, iterations: 100, tine: 8.91, performance: 0.188296

.1 07. mul ti saxpy_t ask+reduction 16777216 8192 100

size: 16777216, bs: 8192, iterations: 100, time: 7.03558, perfornance: 0.238462

Override the Number of Threads Used

Let's have a closer look at the third implementation, i.e. 03.multisaxpy_task, which took 0.648536 seconds to finish using 48 threads. Remember that a
full CM node features 48 threads (0-47) divided in two sockets: 0-11,24-35 for the first socket and 12-23,36-47 for the second socket. Notice that they
are indeed not consecutive

We can change the threads used by OmpSs-2 with the Linux command t askset . For example, the command to run this binary with 24 threads
interleaved between the two sockets would be:

taskset -c 0-23 ./03.nultisaxpy_task 16777216 8192 100

Similarly, to run this benchmark using all the 24 threads of the second socket use the following command:
taskset -c 12-23,36-47 ./03.nultisaxpy_task 16777216 8192 100

You can also try to run this example with only 12 threads of the first socket:

taskset -c 0-11 ./03.nultisaxpy_task 16777216 8192 100

or 12 threads interleaved between the two sockets:

taskset -c 0-5,12-17 ./03. mul tisaxpy_task 16777216 8192 100

Changing the number of threads assigned to OmpSs-2 affects the performance of the application and not necessarily in a negative way, e.g. see below:

$./03.nul tisaxpy_task 16777216 8192 100

size: 16777216, bs: 8192, iterations: 100, time: 0.653537, performance: 2.56714
$ taskset -c 0-23 ./03.nultisaxpy_task 16777216 8192 100

size: 16777216, bs: 8192, iterations: 100, time: 0.686265, perfornmance: 2.44471
$ taskset -c 12-23,36-47 ./03.nultisaxpy_task 16777216 8192 100

size: 16777216, bs: 8192, iterations: 100, time: 0.650363, perfornance: 2.57967
$ taskset -c 0-11 ./03.nultisaxpy_task 16777216 8192 100

size: 16777216, bs: 8192, iterations: 100, tine: 0.55417, performance: 3.02745

$ taskset -c 0-5,12-17 ./03. mul tisaxpy_task 16777216 8192 100

WikiPrint - from Polar Technologies

size: 16777216, bs: 8192, iterations: 100, time: 0.705859, perfornmance: 2.37685

Creating a Dependency Graph

Let's continue with the same example used above and create a dependency graph using only 12 threads of one socket (e.g. the second), which
demonstrated to be the affinity giving the best results. Furthermore, we are not longer interested in running 100 iterations (nor using a large number of
elements) to benchmark this example and hence only one iteration will suffice to generate a complete graph of this application. Run the following
command:

NANCS6=gr aph taskset -c¢ 12-23 ./03.multisaxpy_task 196608 8192 1

This command can take some time. Once it has finished it should have created a script with the name graph-XXXXX-YYYYYYYYY-script.sh and a
directory graph-XXXXX-YYYYYYYYY-components. Execute the script by typing:

bash graph- XXXXX- YYYYYYYYY-scri pt.sh
to merge the intermediate results into a single PDF file which should look like this:
which illustrates 24 tasks executed in parallel using 12 threads.

References

» ?https://pm.bsc.es/gitlab/ompss-2/examples/multisaxpy

* ?https://pm.bsc.es/ftp/ompss-2/doc/examples/local/sphinx/03-fundamentals.html
» ?https://en.wikipedia.org/wiki/AXPY

Dot-product Benchmark (OmpSs-2)

Users must clone/download this example's repository from 2https://pm.bsc.es/gitlab/ompss-2/examples/dot-product and transfer it to a DEEP working
directory.

Description

This benchmark runs a dot-product operation. The dot-product (also known as scalar product) is an algebraic operation that takes two equal-length
sequences of numbers and returns a single number.

There are 3 implementations of this benchmark.
Execution Instructions

./ dot _product Sl ZE CHUNK_SI ZE
where:

« S| ZE is the number of elements of the vectors used on the dot-product operation.

* The dot-product operation will be applied to the vector in blocks that contains CHUNK_SI ZE elements.
References

» ?https://pm.bsc.es/gitlab/ompss-2/examples/dot-product

» ?https://en.wikipedia.org/wiki/Dot_product

Mergesort Benchmark (OmpSs-2)

Users must clone/download this example's repository from 2https://pm.bsc.es/gitlab/ompss-2/examples/mergesort and transfer it to a DEEP working
directory.

https://pm.bsc.es/gitlab/ompss-2/examples/multisaxpy
https://pm.bsc.es/ftp/ompss-2/doc/examples/local/sphinx/03-fundamentals.html
https://en.wikipedia.org/wiki/AXPY
https://pm.bsc.es/gitlab/ompss-2/examples/dot-product
https://pm.bsc.es/gitlab/ompss-2/examples/dot-product
https://en.wikipedia.org/wiki/Dot_product
https://pm.bsc.es/gitlab/ompss-2/examples/mergesort

WikiPrint - from Polar Technologies

Description

This benchmark is a recursive sorting algorithm based on comparisons.
There are 6 implementations of this benchmark.

Execution Instructions

./ mergesort N BLOCK_SI ZE

where:

* Nis the number of elements to be sorted. Mandatory for all versions of this benchmark.
* BLOCK_SI ZE is used to determine the threshold when the task becomes final. If the array size is less or equal than BLOCK_SI ZE, the task will
become final, so no more tasks will be created inside it. Mandatory for all versions of this benchmark.

References

« ?https://[pm.bsc.es/gitlab/ompss-2/examples/mergesort

* ?https://en.wikipedia.org/wiki/Merge sort

Nqueens Benchmark (OmpSs-2)

Users must clone/download this example's repository from 2https://pm.bsc.es/gitlab/ompss-2/examples/nqueens and transfer it to a DEEP working
directory.

Description

This benchmark computes, for a NxN chessboard, the number of configurations of placing N chess queens in the chessboard such that none of them is
able to attack any other. It is implemented using a branch-and-bound algorithm.

There are 7 implementations of this benchmark.
Execution Instructions
.In-queens N [threshol d]

where:

* Nis the chessboard's size. Mandatory for all versions of this benchmark.

e threshol d is the number of rows of the chessboard that will generate tasks.

The remaining rows (N - threshold) will not generate tasks and will be executed in serial mode. Mandatory from all versions of this benchmark except
from 01 (sequential version) and 02 (fully parallel version).

References

« ?https://pm.bsc.es/gitlab/ompss-2/examples/ngueens

« ?https://en.wikipedia.org/wiki/Eight _queens puzzle

Matmul Benchmark (OmpSs-2)

Users must clone/download this example's repository from 2https://pm.bsc.es/gitlab/ompss-2/examples/matmul and transfer it to a DEEP working
directory.

Description

This benchmark runs a matrix multiplication operation C = A?B, where A has size N?M, B has size M?P, and the resulting matrix C has size N?P.

https://pm.bsc.es/gitlab/ompss-2/examples/mergesort
https://en.wikipedia.org/wiki/Merge_sort
https://pm.bsc.es/gitlab/ompss-2/examples/nqueens
https://pm.bsc.es/gitlab/ompss-2/examples/nqueens
https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://pm.bsc.es/gitlab/ompss-2/examples/matmul

WikiPrint - from Polar Technologies

There are 3 implementations of this benchmark.

Execution Instructions

./matmul N M P BLOCK_SI ZE

where:

* Nis the number of rows of the matrix A.
* Mis the number of columns of the matrix A and the number of rows of the matrix B.
e Pis the number of columns of the matrix B.

* The matrix multiplication operation will be applied in blocks that contains BLOCK_SI ZE?BLOCK_SI ZE elements.

References

» ?https://pm.bsc.es/gitlab/ompss-2/examples/matmul

» ?https://pm.bsc.es/ftp/ompss-2/doc/examples/local/sphinx/02-examples.html

» ?https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm

Cholesky Benchmark (OmpSs-2+MKL)

Users must clone/download this example's repository from 2https://pm.bsc.es/gitlab/ompss-2/examples/cholesky and transfer it to a DEEP working
directory.

Description

This benchmark is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose. This
Cholesky decomposition is carried out with OmpSs-2 using tasks with priorities.

There are 3 implementations of this benchmark.

The code uses the CBLAS and LAPACKE interfaces to both BLAS and LAPACK. By default we try to find MKL, ATLAS and LAPACKE from the
MKLROOT, LIBRARY_PATH and C_INCLUDE_PATH environment variables. If you are using an implementation with other linking requirements, please
edit the LI BS entry in the makefile accordingly.

The Makefile has three additional rules:

* run: runs each version one after the other.
* run-graph: runs the OmpSs-2 versions with the graph instrumentation.

e run-extrae: runs the OmpSs-2 versions with the extrae instrumentation.
For the graph instrumentation, it is recommended to view the resulting PDF in single page mode and to advance through the pages. This will show the

actual instantiation and execution of the code. For the extrae instrumentation, extrae must be loaded and available at least through the
LD LI BRARY_PATH environment variable.

Execution Instructions

./ chol esky Sl ZE BLOCK_SI ZE
where:

» Sl ZE is the number of elements per side of the matrix.
» The decomposition is made by blocks of BLOCK_SI ZE by BLOCK_SI ZE elements.

References

e ?https://[pm.bsc.es/gitlab/ompss-2/examples/cholesky

* ?https://pm.bsc.es/ftp/ompss-2/doc/examples/02-examples/cholesky-mkl/README.html

» ?https://en.wikipedia.org/wiki/Eight queens puzzle

https://pm.bsc.es/gitlab/ompss-2/examples/matmul
https://pm.bsc.es/ftp/ompss-2/doc/examples/local/sphinx/02-examples.html
https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm
https://pm.bsc.es/gitlab/ompss-2/examples/cholesky
https://pm.bsc.es/gitlab/ompss-2/examples/cholesky
https://pm.bsc.es/ftp/ompss-2/doc/examples/02-examples/cholesky-mkl/README.html
https://en.wikipedia.org/wiki/Eight_queens_puzzle

WikiPrint - from Polar Technologies

Nbody Benchmark (MPI+OmpSs-2+TAMPI)

Users must clone/download this example's repository from 2https://pm.bsc.es/gitlab/ompss-2/examples/nbody and transfer it to a DEEP working
directory.

Description

This benchmark represents an N-body simulation to numerically approximate the evolution of a system of bodies in which each body continuously
interacts with every other body. A familiar example is an astrophysical simulation in which each body represents a galaxy or an individual star, and the
bodies attract each other through the gravitational force.

There are 7 implementations of this benchmark which are compiled in different binaries by executing the command neke. These versions can be
blocking, when the particle space is divided into smaller blocks, or non-blocking, when it is not.

The interoperability versions (MPI+OmpSs-2+TAMPI) are compiled only if the environment variable TAMPI _HOME is set to the Task-Aware MPI (TAMPI)
library's installation directory.

Execution Instructions

The binaries accept several options. The most relevant options are the number of total particles (- p) and the number of timesteps (- t). More options can
be seen with the - h option. An example of execution could be:

npi exec -n 4 -bind-to hwthread: 16 ./nbody -t 100 -p 8192

in which the application will perform 100 timesteps in 4 MPI processes with 16 hardware threads in each process (used by the OmpSs-2 runtime). The
total number of particles will be 8192 so that each process will have 2048 particles (2 blocks per process).

References

* ?https://pm.bsc.es/gitlab/ompss-2/examples/nbody

» ?https://en.wikipedia.org/wiki/N-body simulation

Heat Benchmark (MPI+OmpSs-2+TAMPI)

Users must clone/download this example's repository from 2https:/pm.bsc.es/gitlab/ompss-2/examples/heat and transfer it to a DEEP working directory.

Description

This benchmark uses an iterative Gauss-Seidel method to solve the heat equation, which is a parabolic partial differential equation that describes the
distribution of heat (or variation in temperature) in a given region over time. The heat equation is of fundamental importance in a wide range of science
fields. In mathematics, it is the parabolic partial differential equation par excellence. In statistics, it is related to the study of the Brownian motion. Also, the
diffusion equation is a generic version of the heat equation, and it is related to the study of chemical diffusion processes.

There are 9 implementations of this benchmark which are compiled in different binaries by executing the command nake.

The interoperability versions (MPI+OmpSs-2+TAMPI) are compiled only if the environment variable TAMPI _HOME is set to the Task-Aware MPI (TAMPI)
library's installation directory.

Execution Instructions

The binaries accept several options. The most relevant options are the size of the matrix in each dimension (- s) and the number of timesteps (- t). More
options can be seen with the - h option. An example of execution could be:

npiexec -n 4 -bind-to hwthread: 16 ./heat -t 150 -s 8192

in which the application will perform 150 timesteps in 4 MPI processes with 16 hardware threads in each process (used by the OmpSs-2 runtime). The
size of the matrix in each dimension will be 8192 (81922 elements in total), this means that each process will have 2048x8192 elements (16 blocks per
process).

https://pm.bsc.es/gitlab/ompss-2/examples/nbody
https://pm.bsc.es/gitlab/ompss-2/examples/nbody
https://en.wikipedia.org/wiki/N-body_simulation
https://pm.bsc.es/gitlab/ompss-2/examples/heat

WikiPrint - from Polar Technologies

References

* ?https://pm.bsc.es/gitlab/ompss-2/examples/heat

» ?https://pm.bsc.es/ftp/ompss-2/doc/examples/local/sphinx/04-mpi+ompss-2.html

» ?https://en.wikipedia.org/wiki/Heat equation

Krist Benchmark (OmpSs-2+CUDA)

Users must clone/download this example's repository from 2https://pm.bsc.es/gitlab/ompss-2/examples/krist and transfer it to a DEEP working directory.

Description

This benchmark represents the krist kernel, which is used in crystallography to find the exact shape of a molecule using Rntgen diffraction on single
crystals or powders.

There are 2 implementations of this benchmark, krist and krist-unified using regular and unified CUDA memory, repectively.
Execution Instructions

.lkrist NNANR
where:

* N_Ais the number of atoms (1000 by default).
* N_Ris the umber of reflections (10000 by default).

References

e ?https://[pm.bsc.es/gitlab/ompss-2/examples/krist

10

https://pm.bsc.es/gitlab/ompss-2/examples/heat
https://pm.bsc.es/ftp/ompss-2/doc/examples/local/sphinx/04-mpi+ompss-2.html
https://en.wikipedia.org/wiki/Heat_equation
https://pm.bsc.es/gitlab/ompss-2/examples/krist
https://pm.bsc.es/gitlab/ompss-2/examples/krist

	Programming with OmpSs-2
	Quick Overview
	Quick Setup on DEEP System for a Pure OmpSs-2 Application
	Using the Repositories
	System Configuration
	Building and Running the Examples
	Controlling the Available Threads
	Creating Dependency Graphs
	Obtaining Statistics
	Tracing with Extrae

	A Step-By-Step Detailed Guide to Execute the Multisaxpy Benchmark (OmpSs-2)
	Description
	Execution Instructions
	Downloading, Building and Executing this Benchmark
	Override the Number of Threads Used
	Creating a Dependency Graph
	References

	Dot-product Benchmark (OmpSs-2)
	Description
	Execution Instructions
	References

	Mergesort Benchmark (OmpSs-2)
	Description
	Execution Instructions
	References

	Nqueens Benchmark (OmpSs-2)
	Description
	Execution Instructions
	References

	Matmul Benchmark (OmpSs-2)
	Description
	Execution Instructions
	References

	Cholesky Benchmark (OmpSs-2+MKL)
	Description
	Execution Instructions
	References

	Nbody Benchmark (MPI+OmpSs-2+TAMPI)
	Description
	Execution Instructions
	References

	Heat Benchmark (MPI+OmpSs-2+TAMPI)
	Description
	Execution Instructions
	References

	Krist Benchmark (OmpSs-2+CUDA)
	Description
	Execution Instructions
	References

