
WikiPrint - from Polar Technologies

1

Programming with OmpSs-2

Table of contents:

• Quick Overview

• Quick Setup on DEEP System for a Pure OmpSs-2 Application

• Using the Repositories

• Examples:

• A Step-By-Step Detailed Guide to Execute the Multisaxpy Benchmark (OmpSs-2)

• Dot-product Benchmark (OmpSs-2)

• Mergesort Benchmark (OmpSs-2)

• Nqueens Benchmark (OmpSs-2)

• Matmul Benchmark (OmpSs-2)

• Cholesky Nenchmark (OmpSs-2+MKL)

• Nbody Nenchmark (MPI+OmpSs-2+TAMPI)

• Heat Benchmark (MPI+OmpSs-2+TAMPI)

Quick Overview

OmpSs-2 is a programming model composed of a set of directives and library routines that can be used in conjunction with a high-level programming

language (such as C, C++ or Fortran) in order to develop concurrent applications. Its name originally comes from two other programming models:

OpenMP and StarSs. The design principles of these two programming models constitute the fundamental ideas used to conceive the OmpSs

philosophy.

OmpSs-2 thread-pool execution model differs from the fork-join parallelism implemented in OpenMP.

A task is the minimum execution entity that can be managed independently by the runtime scheduler. Task dependences let the user annotate the data

flow of the program and are used to determine, at runtime, if the parallel execution of two tasks may cause data races.

The reference implementation of OmpSs-2 is based on the Mercurium source-to-source compiler and the Nanos6 runtime library:

• Mercurium source-to-source compiler provides the necessary support for transforming the high-level directives into a parallelized version of the

application.

• Nanos6 runtime library provides services to manage all the parallelism in the user-application, including task creation, synchronization and data

movement, as well as support for resource heterogeneity.

Additional information about the OmpSs-2 programming model can be found at:

• OmpSs-2 official website. ?https://pm.bsc.es/ompss-2

• OmpSs-2 specification. ?https://pm.bsc.es/ftp/ompss-2/doc/spec

• OmpSs-2 user guide. ?https://pm.bsc.es/ftp/ompss-2/doc/user-guide

• OmpSs-2 examples repository. ?https://pm.bsc.es/gitlab/ompss-2/examples

• OmpSs-2 manual with examples and exercises. ?https://pm.bsc.es/ftp/ompss-2/doc/examples/index.html

• Mercurium official website. ?Link 1, ?Link 2

• Nanos official website. ?Link 1, ?Link 2

Quick Setup on DEEP System for a Pure OmpSs-2 Application

We highly recommend to interactively log in a cluster module (CM) node to begin using OmpSs-2. To request an entire CM node for an interactive

session, please execute the following command to use all the 48 available threads:

srun -p dp-cn -N 1 -n 1 -c 48 --pty /bin/bash -i

Note that the command above is consistent with the actual hardware configuration of the cluster module with hyper-threading enabled.

OmpSs-2 has already been installed on DEEP and can be used by simply executing the following commands:

https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#QuickOverview
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#QuickSetuponDEEPSystemforaPureOmpSs-2Application
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#UsingtheRepositories
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#AStep-By-StepDetailedGuidetoExecutetheMultisaxpyBenchmark
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#Dot-productBenchmarkOmpSs-2
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#MergesortBenchmarkOmpSs-2
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#NqueensBenchmarkOmpSs-2
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#MatmulBenchmarkOmpSs-2
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#CholeskyBenchmarkOmpSs-2MKL
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#NbodyBenchmarkMPI+OmpSs-2TAMPI
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#HeatBenchmarkMPI+OmpSs-2TAMPI
https://pm.bsc.es/ompss-2
https://pm.bsc.es/ftp/ompss-2/doc/spec
https://pm.bsc.es/ftp/ompss-2/doc/user-guide
https://pm.bsc.es/gitlab/ompss-2/examples
https://pm.bsc.es/ftp/ompss-2/doc/examples/index.html
https://www.bsc.es/research-and-development/software-and-apps/software-list/mercurium-ccfortran-source-source-compiler
https://pm.bsc.es/mcxx
https://www.bsc.es/research-and-development/software-and-apps/software-list/nanos-rtl
https://pm.bsc.es/nanox

WikiPrint - from Polar Technologies

2

modulepath="/usr/local/software/skylake/Stages/2018b/modules/all/Core:$modulepath"

modulepath="/usr/local/software/skylake/Stages/2018b/modules/all/Compiler/mpi/intel/2019.0.117-GCC-7.3.0:$modulepath"

modulepath="/usr/local/software/skylake/Stages/2018b/modules/all/MPI/intel/2019.0.117-GCC-7.3.0/psmpi/5.2.1-1-mt:$modulepath"

export MODULEPATH="$modulepath:$MODULEPATH"

module load OmpSs-2

Remember that OmpSs-2 uses a thread-pool execution model which means that it permanently uses all the threads present on the system. Users are

strongly encouraged to always check the system affinity by running the NUMA command srun numactl --show:

$ srun numactl --show

policy: default

preferred node: current

physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

cpubind: 0 1

nodebind: 0 1

membind: 0 1

as well as the Nanos6 command srun nanos6-info --runtime-details | grep List:

$ srun nanos6-info --runtime-details | grep List

Initial CPU List 0-47

NUMA Node 0 CPU List 0-35

NUMA Node 1 CPU List 12-47

System affinity can be used to specify, for example, the ratio of MPI and OmpSs-2 processes for a hybrid application and can be modified by user

request in different ways:

• Via the command srun or salloc. However, if the affinity given by SLURM does not correspond to the resources requested, it should be reported

to the system administrators.

• Via the command numactl.

• Via the command taskset.

Using the Repositories

All the examples shown here are publicly available at ?https://pm.bsc.es/gitlab/ompss-2/examples. Users must clone/download each example's

repository and then transfer it to a DEEP working directory.

System Configuration

Please refer to section Quick Setup on DEEP System to get a functional version of OmpSs-2 on DEEP. It is also recommended to run OmpSs-2 via an

interactive session on a cluster module (CM) node.

Building and Running the Examples

All the examples come with a Makefile already configured to build (e.g. make) and run (e.g. make run) them. You can clean the directory with the

command make clean.

Controlling the Available Threads

In order to limit or constraint the available threads for an application, the Unix taskset tool can be used to launch applications with a given thread affinity.

In order to use taskset, simply precede the application's binary with taskset followed by a list of CPU IDs specifying the desired affinity:

taskset -c 0,2-4 ./application

https://pm.bsc.es/gitlab/ompss-2/examples
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#QuickSetuponDEEPSystem

WikiPrint - from Polar Technologies

3

The example above will run application with 4 cores: 0, 2, 3, 4.

Creating Dependency Graphs

Nanos6 allows for a graphical representation of data dependencies to be extracted. In order to generate said graph, run the application with the NANOS6

environment variable set to graph:

NANOS6=graph ./application

By default graph nodes will include the full path of the source code. To remove these, set the following environment variable:

NANOS6_GRAPH_SHORTEN_FILENAMES=1

The result will be a PDF file with several pages, each representing the graph at a certain point in time. For best results, we suggest to display the PDF

with single page view, showing a full page and to advance page by page.

Obtaining Statistics

Another equally interesting feature of Nanos6 is obtaining statistics. To do so, simply run the application as:

NANOS6=stats ./application or also NANOS6=stats-papi ./application

The first collects timing statistics while the second also records hardware counters (compilation with PAPI is needed for the second). By default, the

statistics are emitted standard error when the program ends.

Tracing with Extrae

A trace.sh file can be used to include all the environment variables needed to get an instrumentation trace of the execution. The content of this file is as

follows:

#!/bin/bash

export EXTRAE_CONFIG_FILE=extrae.xml

export NANOS6="extrae"

$*

Additionally, you will need to change your running script in order to invoke the program through this trace.sh script. Although you can also edit your

running script adding all the environment variables related with the instrumentation, it is preferable to use this extra script to easily change between

instrumented and non-instrumented executions. When in need to instrument your execution, simply include trace.sh before the program invocation. Note

that the extrae.xml file, which is used to configure the Extrae library to get a Paraver trace, is also needed.

A Step-By-Step Detailed Guide to Execute the Multisaxpy Benchmark (OmpSs-2)

Users must clone/download this example's repository from ?https://pm.bsc.es/gitlab/ompss-2/examples/multisaxpy and transfer it to a DEEP working

directory.

Description

This benchmark runs several SAXPY operations. SAXPY is a combination of scalar multiplication and vector addition (a common operation in

computations with vector processors) and constitutes a level 1 operation in the Basic Linear Algebra Subprograms (BLAS) package.

There are 7 implementations of this benchmark.

Execution Instructions

./multisaxpy SIZE BLOCK_SIZE INTERATIONS

where:

• SIZE is the number of elements of the vectors used on the SAXPY operation.

• The SAXPY operation will be applied to the vector in blocks that contains BLOCK_SIZE elements.

https://pm.bsc.es/gitlab/ompss-2/examples/multisaxpy

WikiPrint - from Polar Technologies

4

• ITERATIONS is the number of times the SAXPY operation is executed.

Downloading, Building and Executing this Benchmark

Clone the repository to your local machine:

git clone https://pm.bsc.es/gitlab/ompss-2/examples/multisaxpy

and upload it to the /work/cdeep/USERNAME/ directory (which might not exist yet) of the DEEP cluster:

scp -r multisaxpy/ USERNAME@deep.fz-juelich.de:~/work/cdeep/USERNAME/

Now connect to the DEEP login node:

ssh -X USERNAME@deep.fz-juelich.de

and from there go to the multisaxpy folder

cd /work/cdeep/USERNAME/multisaxpy

to request an interactive cluster module (CM) node in order to use all the available 48 threads to run a pure OmpSs-2 application:

srun -p dp-cn -N 1 -n 1 -c 48 --pty /bin/bash -i

Load the OmpSs-2 module via the following commands:

modulepath="/usr/local/software/skylake/Stages/2018b/modules/all/Core:$modulepath"

modulepath="/usr/local/software/skylake/Stages/2018b/modules/all/Compiler/mpi/intel/2019.0.117-GCC-7.3.0:$modulepath"

modulepath="/usr/local/software/skylake/Stages/2018b/modules/all/MPI/intel/2019.0.117-GCC-7.3.0/psmpi/5.2.1-1-mt:$modulepath"

export MODULEPATH="$modulepath:$MODULEPATH"

module load OmpSs-2

and check the affinity via the command srun numactly --show which should report the following:

$ srun numactly --show

policy: default

preferred node: current

physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

cpubind: 0 1

nodebind: 0 1

membind: 0 1

Now you should be able to clean, build and execute this benchmark consisting of 7 implementations via the command make:

$ make clean

rm -f 01.multisaxpy_seq 02.multisaxpy_task_loop 03.multisaxpy_task 04.multisaxpy_task+dep 05.multisaxpy_task+weakdep 06.multisaxpy_task_loop+weakdep 07.multisaxpy_task+reduction

$ make

mcxx --ompss-2 01.multisaxpy_seq.cpp main.cpp -o 01.multisaxpy_seq -lrt

mcxx --ompss-2 02.multisaxpy_task_loop.cpp main.cpp -o 02.multisaxpy_task_loop -lrt

mcxx --ompss-2 03.multisaxpy_task.cpp main.cpp -o 03.multisaxpy_task -lrt

03.multisaxpy_task.cpp:3:13: info: adding task function 'axpy_task' for device 'smp'

03.multisaxpy_task.cpp:12:3: info: call to task function '::axpy_task'

03.multisaxpy_task.cpp:3:13: info: task function declared here

mcxx --ompss-2 04.multisaxpy_task+dep.cpp main.cpp -o 04.multisaxpy_task+dep -lrt

04.multisaxpy_task+dep.cpp:3:13: info: adding task function 'axpy_task' for device 'smp'

04.multisaxpy_task+dep.cpp:12:3: info: call to task function '::axpy_task'

WikiPrint - from Polar Technologies

5

04.multisaxpy_task+dep.cpp:3:13: info: task function declared here

mcxx --ompss-2 05.multisaxpy_task+weakdep.cpp main.cpp -o 05.multisaxpy_task+weakdep -lrt

05.multisaxpy_task+weakdep.cpp:3:13: info: adding task function 'axpy_task' for device 'smp'

05.multisaxpy_task+weakdep.cpp:12:3: info: call to task function '::axpy_task'

05.multisaxpy_task+weakdep.cpp:3:13: info: task function declared here

mcxx --ompss-2 06.multisaxpy_task_loop+weakdep.cpp main.cpp -o 06.multisaxpy_task_loop+weakdep -lrt

mcxx --ompss-2 07.multisaxpy_task+reduction.cpp main.cpp -o 07.multisaxpy_task+reduction -lrt

07.multisaxpy_task+reduction.cpp:14:13: info: reduction of variable 'yy' of type 'double [elements]' solved to 'operator +'

<openmp-builtin-reductions>:1:1: info: reduction declared here

07.multisaxpy_task+reduction.cpp:21:13: info: reduction of variable 'y' of type 'double [N]' solved to 'operator +'

<openmp-builtin-reductions>:1:1: info: reduction declared here

$ make run

./01.multisaxpy_seq 16777216 8192 100

size: 16777216, bs: 8192, iterations: 100, time: 3.30132, performance: 0.508197

NANOS6_SCHEDULER=fifo ./02.multisaxpy_task_loop 16777216 8192 100

size: 16777216, bs: 8192, iterations: 100, time: 0.411888, performance: 4.07325

./03.multisaxpy_task 16777216 8192 100

size: 16777216, bs: 8192, iterations: 100, time: 0.648536, performance: 2.58694

./04.multisaxpy_task+dep 16777216 8192 100

size: 16777216, bs: 8192, iterations: 100, time: 1.04207, performance: 1.60998

./05.multisaxpy_task+weakdep 16777216 8192 100

size: 16777216, bs: 8192, iterations: 100, time: 1.09049, performance: 1.5385

NANOS6_SCHEDULER=fifo ./06.multisaxpy_task_loop+weakdep 16777216 8192 100

size: 16777216, bs: 8192, iterations: 100, time: 8.91, performance: 0.188296

./07.multisaxpy_task+reduction 16777216 8192 100

size: 16777216, bs: 8192, iterations: 100, time: 7.03558, performance: 0.238462

References

• ?https://pm.bsc.es/gitlab/ompss-2/examples/multisaxpy

• ?https://pm.bsc.es/ftp/ompss-2/doc/examples/local/sphinx/03-fundamentals.html

• ?https://en.wikipedia.org/wiki/AXPY

Dot-product Benchmark (OmpSs-2)

Users must clone/download this example's repository from ?https://pm.bsc.es/gitlab/ompss-2/examples/dot-product and transfer it to a DEEP working

directory.

Description

This benchmark runs a dot-product operation. The dot-product (also known as scalar product) is an algebraic operation that takes two equal-length

sequences of numbers and returns a single number.

There are 3 implementations of this benchmark.

Execution Instructions

./dot_product SIZE CHUNK_SIZE

where:

• SIZE is the number of elements of the vectors used on the dot-product operation.

• The dot-product operation will be applied to the vector in blocks that contains CHUNK_SIZE elements.

References

• ?https://pm.bsc.es/gitlab/ompss-2/examples/dot-product

https://pm.bsc.es/gitlab/ompss-2/examples/multisaxpy
https://pm.bsc.es/ftp/ompss-2/doc/examples/local/sphinx/03-fundamentals.html
https://en.wikipedia.org/wiki/AXPY
https://pm.bsc.es/gitlab/ompss-2/examples/dot-product
https://pm.bsc.es/gitlab/ompss-2/examples/dot-product

WikiPrint - from Polar Technologies

6

• ?https://en.wikipedia.org/wiki/Dot_product

Mergesort Benchmark (OmpSs-2)

Users must clone/download this example's repository from ?https://pm.bsc.es/gitlab/ompss-2/examples/mergesort and transfer it to a DEEP working

directory.

Description

This benchmark is a recursive sorting algorithm based on comparisons.

There are 6 implementations of this benchmark.

Execution Instructions

./mergesort N BLOCK_SIZE

where:

• N is the number of elements to be sorted. Mandatory for all versions of this benchmark.

• BLOCK_SIZE is used to determine the threshold when the task becomes final. If the array size is less or equal than BLOCK_SIZE, the task will

become final, so no more tasks will be created inside it. Mandatory for all versions of this benchmark.

References

• ?https://pm.bsc.es/gitlab/ompss-2/examples/mergesort

• ?https://en.wikipedia.org/wiki/Merge_sort

Nqueens Benchmark (OmpSs-2)

Users must clone/download this example's repository from ?https://pm.bsc.es/gitlab/ompss-2/examples/nqueens and transfer it to a DEEP working

directory.

Description

This benchmark computes, for a NxN chessboard, the number of configurations of placing N chess queens in the chessboard such that none of them is

able to attack any other. It is implemented using a branch-and-bound algorithm.

There are 7 implementations of this benchmark.

Execution Instructions

./n-queens N [threshold]

where:

• N is the chessboard's size. Mandatory for all versions of this benchmark.

• threshold is the number of rows of the chessboard that will generate tasks.

The remaining rows (N - threshold) will not generate tasks and will be executed in serial mode. Mandatory from all versions of this benchmark except

from 01 (sequential version) and 02 (fully parallel version).

References

• ?https://pm.bsc.es/gitlab/ompss-2/examples/nqueens

• ?https://en.wikipedia.org/wiki/Eight_queens_puzzle

https://en.wikipedia.org/wiki/Dot_product
https://pm.bsc.es/gitlab/ompss-2/examples/mergesort
https://pm.bsc.es/gitlab/ompss-2/examples/mergesort
https://en.wikipedia.org/wiki/Merge_sort
https://pm.bsc.es/gitlab/ompss-2/examples/nqueens
https://pm.bsc.es/gitlab/ompss-2/examples/nqueens
https://en.wikipedia.org/wiki/Eight_queens_puzzle

WikiPrint - from Polar Technologies

7

Matmul Benchmark (OmpSs-2)

Users must clone/download this example's repository from ?https://pm.bsc.es/gitlab/ompss-2/examples/matmul and transfer it to a DEEP working

directory.

Description

This benchmark runs a matrix multiplication operation C = A?B, where A has size N?M, B has size M?P, and the resulting matrix C has size N?P.

There are 3 implementations of this benchmark.

Execution Instructions

./matmul N M P BLOCK_SIZE

where:

• N is the number of rows of the matrix A.

• M is the number of columns of the matrix A and the number of rows of the matrix B.

• P is the number of columns of the matrix B.

• The matrix multiplication operation will be applied in blocks that contains BLOCK_SIZE?BLOCK_SIZE elements.

References

• ?https://pm.bsc.es/gitlab/ompss-2/examples/matmul

• ?https://pm.bsc.es/ftp/ompss-2/doc/examples/local/sphinx/02-examples.html

• ?https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm

Cholesky Benchmark (OmpSs-2+MKL)

Users must clone/download this example's repository from ?https://pm.bsc.es/gitlab/ompss-2/examples/cholesky and transfer it to a DEEP working

directory.

Description

This benchmark is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose. This

Cholesky decomposition is carried out with OmpSs-2 using tasks with priorities.

There are 3 implementations of this benchmark.

The code uses the CBLAS and LAPACKE interfaces to both BLAS and LAPACK. By default we try to find MKL, ATLAS and LAPACKE from the

MKLROOT, LIBRARY_PATH and C_INCLUDE_PATH environment variables. If you are using an implementation with other linking requirements, please

edit the LIBS entry in the makefile accordingly.

The Makefile has three additional rules:

• run: runs each version one after the other.

• run-graph: runs the OmpSs-2 versions with the graph instrumentation.

• run-extrae: runs the OmpSs-2 versions with the extrae instrumentation.

For the graph instrumentation, it is recommended to view the resulting PDF in single page mode and to advance through the pages. This will show the

actual instantiation and execution of the code. For the extrae instrumentation, extrae must be loaded and available at least through the

LD_LIBRARY_PATH environment variable.

Execution Instructions

./cholesky SIZE BLOCK_SIZE

where:

https://pm.bsc.es/gitlab/ompss-2/examples/matmul
https://pm.bsc.es/gitlab/ompss-2/examples/matmul
https://pm.bsc.es/ftp/ompss-2/doc/examples/local/sphinx/02-examples.html
https://en.wikipedia.org/wiki/Matrix_multiplication_algorithm
https://pm.bsc.es/gitlab/ompss-2/examples/cholesky

WikiPrint - from Polar Technologies

8

• SIZE is the number of elements per side of the matrix.

• The decomposition is made by blocks of BLOCK_SIZE by BLOCK_SIZE elements.

References

• ?https://pm.bsc.es/gitlab/ompss-2/examples/cholesky

• ?https://pm.bsc.es/ftp/ompss-2/doc/examples/02-examples/cholesky-mkl/README.html

• ?https://en.wikipedia.org/wiki/Eight_queens_puzzle

Nbody Benchmark (MPI+OmpSs-2+TAMPI)

Users must clone/download this example's repository from ?https://pm.bsc.es/gitlab/ompss-2/examples/nbody and transfer it to a DEEP working

directory.

Description

This benchmark represents an N-body simulation to numerically approximate the evolution of a system of bodies in which each body continuously

interacts with every other body. A familiar example is an astrophysical simulation in which each body represents a galaxy or an individual star, and the

bodies attract each other through the gravitational force.

There are 7 implementations of this benchmark which are compiled in different binaries by executing the command make. These versions can be

blocking, when the particle space is divided into smaller blocks, or non-blocking, when it is not.

The interoperability versions (MPI+OmpSs-2+TAMPI) are compiled only if the environment variable TAMPI_HOME is set to the Task-Aware MPI (TAMPI)

library's installation directory.

Execution Instructions

The binaries accept several options. The most relevant options are the number of total particles (-p) and the number of timesteps (-t). More options can

be seen with the -h option. An example of execution could be:

mpiexec -n 4 -bind-to hwthread:16 ./nbody -t 100 -p 8192

in which the application will perform 100 timesteps in 4 MPI processes with 16 hardware threads in each process (used by the OmpSs-2 runtime). The

total number of particles will be 8192 so that each process will have 2048 particles (2 blocks per process).

References

• ?https://pm.bsc.es/gitlab/ompss-2/examples/nbody

• ?https://en.wikipedia.org/wiki/N-body_simulation

Heat Benchmark (MPI+OmpSs-2+TAMPI)

Users must clone/download this example's repository from ?https://pm.bsc.es/gitlab/ompss-2/examples/heat and transfer it to a DEEP working directory.

Description

This benchmark uses an iterative Gauss-Seidel method to solve the heat equation, which is a parabolic partial differential equation that describes the

distribution of heat (or variation in temperature) in a given region over time. The heat equation is of fundamental importance in a wide range of science

fields. In mathematics, it is the parabolic partial differential equation par excellence. In statistics, it is related to the study of the Brownian motion. Also, the

diffusion equation is a generic version of the heat equation, and it is related to the study of chemical diffusion processes.

There are 9 implementations of this benchmark which are compiled in different binaries by executing the command make.

The interoperability versions (MPI+OmpSs-2+TAMPI) are compiled only if the environment variable TAMPI_HOME is set to the Task-Aware MPI (TAMPI)

library's installation directory.

Execution Instructions

https://pm.bsc.es/gitlab/ompss-2/examples/cholesky
https://pm.bsc.es/ftp/ompss-2/doc/examples/02-examples/cholesky-mkl/README.html
https://en.wikipedia.org/wiki/Eight_queens_puzzle
https://pm.bsc.es/gitlab/ompss-2/examples/nbody
https://pm.bsc.es/gitlab/ompss-2/examples/nbody
https://en.wikipedia.org/wiki/N-body_simulation
https://pm.bsc.es/gitlab/ompss-2/examples/heat

WikiPrint - from Polar Technologies

9

The binaries accept several options. The most relevant options are the size of the matrix in each dimension (-s) and the number of timesteps (-t). More

options can be seen with the -h option. An example of execution could be:

mpiexec -n 4 -bind-to hwthread:16 ./heat -t 150 -s 8192

in which the application will perform 150 timesteps in 4 MPI processes with 16 hardware threads in each process (used by the OmpSs-2 runtime). The

size of the matrix in each dimension will be 8192 (81922 elements in total), this means that each process will have 2048x8192 elements (16 blocks per

process).

References

• ?https://pm.bsc.es/gitlab/ompss-2/examples/heat

• ?https://pm.bsc.es/ftp/ompss-2/doc/examples/local/sphinx/04-mpi+ompss-2.html

• ?https://en.wikipedia.org/wiki/Heat_equation

Krist Benchmark (OmpSs-2+CUDA)

Users must clone/download this example's repository from ?https://pm.bsc.es/gitlab/ompss-2/examples/krist and transfer it to a DEEP working directory.

Description

This benchmark represents the krist kernel, which is used in crystallography to find the exact shape of a molecule using Rntgen diffraction on single

crystals or powders.

There are 2 implementations of this benchmark, krist and krist-unified using regular and unified CUDA memory, repectively.

Execution Instructions

./krist N_A N_R

where:

• N_A is the number of atoms (1000 by default).

• N_R is the umber of reflections (10000 by default).

References

• ?https://pm.bsc.es/gitlab/ompss-2/examples/krist

https://pm.bsc.es/gitlab/ompss-2/examples/heat
https://pm.bsc.es/ftp/ompss-2/doc/examples/local/sphinx/04-mpi+ompss-2.html
https://en.wikipedia.org/wiki/Heat_equation
https://pm.bsc.es/gitlab/ompss-2/examples/krist
https://pm.bsc.es/gitlab/ompss-2/examples/krist

	Programming with OmpSs-2
	Quick Overview
	Quick Setup on DEEP System for a Pure OmpSs-2 Application
	Using the Repositories
	System Configuration
	Building and Running the Examples
	Controlling the Available Threads
	Creating Dependency Graphs
	Obtaining Statistics
	Tracing with Extrae

	A Step-By-Step Detailed Guide to Execute the Multisaxpy Benchmark (OmpSs-2)
	Description
	Execution Instructions
	Downloading, Building and Executing this Benchmark
	References

	Dot-product Benchmark (OmpSs-2)
	Description
	Execution Instructions
	References

	Mergesort Benchmark (OmpSs-2)
	Description
	Execution Instructions
	References

	Nqueens Benchmark (OmpSs-2)
	Description
	Execution Instructions
	References

	Matmul Benchmark (OmpSs-2)
	Description
	Execution Instructions
	References

	Cholesky Benchmark (OmpSs-2+MKL)
	Description
	Execution Instructions
	References

	Nbody Benchmark (MPI+OmpSs-2+TAMPI)
	Description
	Execution Instructions
	References

	Heat Benchmark (MPI+OmpSs-2+TAMPI)
	Description
	Execution Instructions
	References

	Krist Benchmark (OmpSs-2+CUDA)
	Description
	Execution Instructions
	References

