
WikiPrint - from Polar Technologies

1

Programming with OmpSs?-2

Table of contents:

• Quick Overview

• Quick Setup on DEEP System

• Repository with Examples

• Example: Multisaxpy

Quick Overview

OmpSs?-2 is a programming model composed of a set of directives and library routines that can be used in conjunction with a high-level programming

language (such as C, C++ or Fortran) in order to develop concurrent applications. Its name originally comes from two other programming models:

OpenMP and StarSs?. The design principles of these two programming models constitute the fundamental ideas used to conceive the OmpSs?

philosophy.

OmpSs?-2 thread-pool execution model differs from the fork-join parallelism implemented in OpenMP.

A task is the minimum execution entity that can be managed independently by the runtime scheduler. Task dependences let the user annotate the data

flow of the program and are used to determine, at runtime, if the parallel execution of two tasks may cause data races.

The reference implementation of OmpSs?-2 is based on the Mercurium source-to-source compiler and the Nanos6 runtime library:

• Mercurium source-to-source compiler provides the necessary support for transforming the high-level directives into a parallelized version of the

application.

• Nanos6 runtime library provides services to manage all the parallelism in the user-application, including task creation, synchronization and data

movement, as well as support for resource heterogeneity.

Additional information about the OmpSs?-2 programming model can be found at:

• OmpSs?-2 official website. ?https://pm.bsc.es/ompss-2

• OmpSs?-2 specification. ?https://pm.bsc.es/ftp/ompss-2/doc/spec

• OmpSs?-2 user guide. ?https://pm.bsc.es/ftp/ompss-2/doc/user-guide

• OmpSs?-2 examples repository. ?https://pm.bsc.es/gitlab/ompss-2/examples

• OmpSs?-2 manual with examples and exercises. ?https://pm.bsc.es/ftp/ompss-2/doc/examples/index.html

• Mercurium official website. ?Link 1, ?Link 2

• Nanos official website. ?Link 1, ?Link 2

Quick Setup on DEEP System

We highly recommend to log in a cluster module (CM) node to begin using OmpSs?-2. To request an entire CM node for an interactive session, please

execute the following command:

srun --partition=dp-cn --nodes=1 --ntasks=48 --ntasks-per-socket=24 --ntasks-per-node=48 --pty /bin/bash -i

Note that the command above is consistent with the actual hardware configuration of the cluster module with hyper-threading enabled.

OmpSs?-2 has already been installed on DEEP and can be used by simply executing the following commands:

• modulepath="/usr/local/software/skylake/Stages/2018b/modules/all/Core:$modulepath"

• modulepath="/usr/local/software/skylake/Stages/2018b/modules/all/Compiler/mpi/intel/2019.0.117-GCC-7.3.0:$modulepath"

• modulepath="/usr/local/software/skylake/Stages/2018b/modules/all/MPI/intel/2019.0.117-GCC-7.3.0/psmpi/5.2.1-1-mt:$modulepath"

• export MODULEPATH="$modulepath:$MODULEPATH"

• module load OmpSs-2

Remember that OmpSs??-2 uses a thread-pool execution model which means that it permanently uses all the threads present on the system. Users

are strongly encouraged to always check the system affinity by running the NUMA command numactl --show:

https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#QuickOverview
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#QuickSetuponDEEPSystem
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#RepositorywithExamples
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#Example:Multisaxpy
https://pm.bsc.es/ompss-2
https://pm.bsc.es/ftp/ompss-2/doc/spec
https://pm.bsc.es/ftp/ompss-2/doc/user-guide
https://pm.bsc.es/gitlab/ompss-2/examples
https://pm.bsc.es/ftp/ompss-2/doc/examples/index.html
https://www.bsc.es/research-and-development/software-and-apps/software-list/mercurium-ccfortran-source-source-compiler
https://pm.bsc.es/mcxx
https://www.bsc.es/research-and-development/software-and-apps/software-list/nanos-rtl
https://pm.bsc.es/nanox

WikiPrint - from Polar Technologies

2

$ numactl --show

policy: bind

preferred node: 0

physcpubind: 0 1 2 3 4 5 6 7 8 9 10 11 24 25 26 27 28 29 30 31 32 33 34 35

cpubind: 0

nodebind: 0

membind: 0

as well as the Nanos6 command nanos6-info --runtime-details | grep List:

$ nanos6-info --runtime-details | grep List

Initial CPU List 0-11,24-35

NUMA Node 0 CPU List 0-35

NUMA Node 1 CPU List

Notice that both commands return consistent outputs and, even though an entire node with two sockets has been requested, only the first NUMA node

(i.e. socket) has been correctly bind. As a result, only 48 threads of the first socket (0-11, 24-35), from which 24 are physical and 24 logical

(hyper-threading enabled), are going to be utilised whilst the other 48 threads available on the second socket will remain idle. Therefore, the system

affinity showed above is not valid since it does not represent the resources requested via SLURM.

System affinity can be used to specify, for example, the ratio of MPI and OmpSs?-2 processes for a hybrid application and can be modified by user

request in different ways:

• Via SLURM. However, if the affinity does not correspond to the resources requested like in the previous example, it should be reported to system

admins.

• Via the command numactl.

• Via the command taskset.

Repository with Examples

All the examples shown here are publicly available at ?https://pm.bsc.es/gitlab/ompss-2/examples. Users must clone/download each example's

repository and then transfer it to a DEEP working directory.

System configuration

Please refer to section Quick Setup on DEEP System to get a functional version of OmpSs?-2 on DEEP. It is also recommended to run OmpSs?-2 on a

cluster module (CM) node.

Building and running the examples

All the examples come with a Makefile already configured to build (e.g. make) and run (e.g. make run) them.

Controlling available threads

In order to limit or constraint the available threads for an application, the Unix taskset tool can be used to launch applications with a given thread affinity.

In order to use taskset, simply precede the application's binary with taskset followed by a list of CPU IDs specifying the desired affinity:

taskset -c 0,2-4 ./application

The example above will run application with 4 cores: 0, 2, 3, 4.

Dependency graphs

Nanos6 allows for a graphical representation of data dependencies to be extracted. In order to generate said graph, run the application with the NANOS6

environment variable set to graph:

NANOS6=graph ./application

By default graph nodes will include the full path of the source code. To remove these, set the following environment variable:

https://pm.bsc.es/gitlab/ompss-2/examples
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/OmpSs-2#QuickSetuponDEEPSystem

WikiPrint - from Polar Technologies

3

NANOS6_GRAPH_SHORTEN_FILENAMES=1

The result will be a PDF file with several pages, each representing the graph at a certain point in time. For best results, we suggest to display the PDF

with single page view, showing a full page and to advance page by page.

Obtaining statistics

Another equally interesting feature of Nanos6 is obtaining statistics. To do so, simply run the application as:

NANOS6=stats ./application or NANOS6=stats-papi ./application

The first collects timing statistics while the second also records hardware counters (compilation with PAPI is needed for the second). By default, the

statistics are emitted standard error when the program ends.

Tracing with Extrae

A trace.sh file can be used to include all the environment variables needed to get an instrumentation trace of the execution. The content of this file is as

follows:

#!/bin/bash

export EXTRAE_CONFIG_FILE=extrae.xml

export NANOS6="extrae"

$*

Additionally, you will need to change your running script in order to invoke the program through this trace.sh script. Although you can also edit your

running script adding all the environment variables related with the instrumentation, it is preferable to use this extra script to easily change between

instrumented and non-instrumented executions. When in need to instrument your execution, simply include trace.sh before the program invocation. Note

that the ??extrae.xml?? file, which is used to configure the Extrae library to get a Paraver trace, is also needed.

Example: Multisaxpy

The examples shown here are publicly available at ?https://pm.bsc.es/gitlab/ompss-2/examples.

Users must clone/download this example's repository from ?https://pm.bsc.es/gitlab/ompss-2/examples/multisaxpy and transfer it to a DEEP working

directory.

https://pm.bsc.es/gitlab/ompss-2/examples
https://pm.bsc.es/gitlab/ompss-2/examples/multisaxpy

	Programming with OmpSs?-2
	Quick Overview
	Quick Setup on DEEP System
	Repository with Examples
	System configuration
	Building and running the examples
	Controlling available threads
	Dependency graphs
	Obtaining statistics
	Tracing with Extrae

	Example: Multisaxpy

