
Wikiprint Book

Title: Offloading computational tasks of hybrid MPI + OpenMP/OmpSs-2 …

Subject: DEEP - Public/User_Guide/Offloading_hybrid_apps

Version: 24

Date: 20.04.2025 00:07:45



WikiPrint - from Polar Technologies

2

Table of Contents

Offloading computational tasks of hybrid MPI + OpenMP/OmpSs-2 applications to GPUs 3

Quick Overview 3

NBody Benchmark 3

Description 3

Requirements 3

Versions 3



WikiPrint - from Polar Technologies

3

Offloading computational tasks of hybrid MPI + OpenMP/OmpSs-2 applications to GPUs

Table of contents:

• Quick Overview

• Examples:

• NBody Benchmark

Quick Overview

NBody Benchmark

Users can clone or download this examples from the ?https://pm.bsc.es/gitlab/DEEP-EST/apps/NBody repository and transfer it to a DEEP working

directory.

Description

An NBody simulation numerically approximates the evolution of a system of bodies in which each body continuously interacts with every other body. A

familiar example is an astrophysical simulation in which each body represents a galaxy or an individual star, and the bodies attract each other through

the gravitational force.

N-body simulation arises in many other computational science problems as well. For example, protein folding is studied using N-body simulation to

calculate electrostatic and Van der Waals forces. Turbulent fluid flow simulation and global illumination computation in computer graphics are other

examples of problems that use NBody simulation.

Requirements

The requirements of this application are shown in the following lists. The main requirements are:

• GNU Compiler Collection.

• OmpSs-2: OmpSs-2 is the second generation of the OmpSs programming model. It is a task-based programming model originated from the ideas of

the OpenMP and StarSs programming models. The specification and user-guide are available at ?https://pm.bsc.es/ompss-2-docs/spec/ and

?https://pm.bsc.es/ompss-2-docs/user-guide/, respectively. OmpSs-2 requires both Mercurium and Nanos6 tools. Mercurium is a source-to-source

compiler which provides the necessary support for transforming the high-level directives into a parallelized version of the application. The Nanos6

runtime system library provides the services to manage all the parallelism in the application (e.g., task creation, synchronization, scheduling, etc).

Downloads at ?https://github.com/bsc-pm.

• Clang + LLVM OpenMP (derived):

• MPI: This application requires an MPI library supporting the multi-threading level of thread support.

In addition, there are some optional tools which enable the building of other application versions:

• CUDA and NVIDIA Unified Memory devices: This application has CUDA variants in which some of the N-body kernels are executed on the available

GPU devices.

• Task-Aware MPI (TAMPI): The Task-Aware MPI library provides the interoperability mechanism for MPI and OpenMP/OmpSs-2. Downloads and

more information at ?https://github.com/bsc-pm/tampi.

Versions

The NBody application has several versions which are compiled in different binaries, by executing the make command. All of them divide the particle

space into smaller blocks. MPI processes are divided into two groups: GPU processes and CPU processes. GPU processes are responsible for

computing the forces between each pair of particles blocks, and then, these forces are sent to the CPU processes, where each process updates its

particles blocks using the received forces. The particles and forces blocks are equally distributed amongst each MPI process in each group. Thus, each

MPI process is in charge of computing the forces or updating the particles of a consecutive chunk of blocks.

The available versions are:

• nbody.mpi.${BS}bs.bin: Parallel version using MPI.

• nbody.mpi.ompss2.${BS}bs.bin: Parallel version using MPI + OmpSs-2 tasks. Both computation and communication phases are taskified, however,

communication tasks are serialized by declaring an artificial dependency on a sentinel variable. This is to prevent deadlocks between processes,

since communication tasks perform blocking MPI calls.

https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/Offloading_hybrid_apps#QuickOverview
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/Offloading_hybrid_apps#NBodyBenchmark
https://pm.bsc.es/gitlab/DEEP-EST/apps/NBody
https://pm.bsc.es/ompss-2-docs/spec/
https://pm.bsc.es/ompss-2-docs/user-guide/
https://github.com/bsc-pm
https://github.com/bsc-pm/tampi


WikiPrint - from Polar Technologies

4

• nbody.mpi.ompss2.cuda.${BS}bs.bin: The same as the previous version but using CUDA tasks to execute the most compute-instensive parts of

the application at the available GPUs.

• nbody.tampi.ompss2.${BS}bs.bin: Parallel version using MPI + OmpSs-2 tasks + TAMPI library. This version disables the artificial dependencies

on the sentinel variable, so communication tasks can run in parallel. The TAMPI library is in charge of managing the blocking MPI calls to avoid the

blocking of the underlying execution resources.

• nbody.tampi.ompss2.cuda.${BS}bs.bin: The same as the previous version but using CUDA tasks to execute the most compute-instensive parts of

the application at the available GPUs.

• nbody.mpi.omp.${BS}bs.bin:

• nbody.mpi.omptarget.${BS}bs.bin:

• nbody.tampi.omp.${BS}bs.bin:

• nbody.tampi.omptarget.${BS}bs.bin:


	Offloading computational tasks of hybrid MPI + OpenMP/OmpSs-2 applications to GPUs
	Quick Overview
	NBody Benchmark
	Description
	Requirements
	Versions



