Wikiprint Book

Title: Information about the batch system (SLURM)
Subject: DEEP - Public/User_Guide/Batch_system
Version: 63

Date: 19.05.2024 15:58:47

WikiPrint - from Polar Technologies

Table of Contents

Information about the batch system (SLURM)

Overview

Available Partitions

Remark about environment

An introductory example
From a shell on a node
Running directly from the front ends
Batch script

Information on past jobs and accounting

Advanced topics

FAQ
Is there a cheat sheet for all main Slurm commands?
Why's my job not running?
How can | check which jobs are running in the machine?
How do | do chain jobs with dependencies?
How can check the status of partitions and nodes?
Can | join stderr and stdout like it was done with -joe in Torque?

N O OO0 o000 0 00 W WwWwwww

WikiPrint - from Polar Technologies

Information about the batch system (SLURM)

The DEEP prototype system is running SLURM for resource management. Documentation of Slurm can be found 2here.

Overview

Slurm offers interactive and batch jobs (scripts submitted into the system). The relevant commands are sr un and sbat ch. The sr un command can be
used to spawn processes (please do not use mpiexec), both from the frontend and from within a batch script. You can also get a shell on a node to
work locally there (e.g. to compile your application natively for a special platform or module).

Available Partitions

Please note that there is no default partition configured. In order to run a job, you have to specify one of the following partitions, using the
--partition=... switch:

Name Description
dp-cn dp-cn[01-50], DEEP Cluster nodes (Xeon Skylake)
do-dam dp-dam[01-16], DEEP DAM nodes (Xeon Cascadelake + 1 V100 +
P 1 Stratix 10)
dp-esb dp-esb[log:@26-75 "[01-75]"], DEEP ESB nodes connected with IB
P EDR (Xeon Cascadelake + 1 V100)
dp-sdv-esb[01-02], DEEP ESB Test nodes (Xeon Cascadelake + 1
dp-sdv-esb
V100)
ml-gpu ml-gpu[01-03], GPU test nodes for ML applications (4 V100 cards)
knl knl[01,04-06], KNL nodes
knl256 knl[01,05], KNL nodes with 64 cores
knl272 knl[04,06], KNL nodes with 68 cores
snc4 knl[05], KNL node in snc4 memory mode
debug all compute nodes (no gateways)

Anytime, you can list the state of the partitions with the si nf o command. The properties of a partition (.e.g. the maximum walltime) can be seen using

scontrol show partition <partition>

Remark about environment

By default, Slurm passes the environment from your job submission session directly to the execution environment. Please be aware of this when running
jobs with sr un or when submitting scripts with sbat ch. This behavior can be controlled via the - - export option. Please refer to the 2Slurm
documentation to get more information about this.

In particular, when submitting job scripts, it is recommended to load the necessary modules within the script and submit the script from a clean
environment.

An introductory example
Suppose you have an mpi executable named hel | o_npi . There are three ways to start the binary.
From a shell on a node

If you just need one node to run your interactive session on you can simply use the srun command (without sal | oc), e.g.:

[kreutzl@eepv ~]$ srun -A deep -N 1 -n 8 -p dp-cn -t 00:30:00 --pty --interactive bash
[kreutzl@lp-cn22 ~]$ srun -n 8 hostname
dp-cn22

https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/

WikiPrint - from Polar Technologies

dp-cn22
dp-cn22
dp-cn22
dp-cn22
dp-cn22
dp-cn22
dp-cn22

The environment is transported to the remote shell, no . profil e, . bashrc, ... are sourced (especially not the modules default from
letc/profile.d/ modul es. sh). As of March 2020, an account has to be specified using the - - account (short - A) option, which is "deepsea” for
DEEP-SEA project members. For people not included in the DEEP-SEA project, please use the "Budget" name you received along with your account
creation.

Assume you would like to run an MPI task on 4 cluster nodes with 2 tasks per node. It's necessary to use sal | oc then:

[kreutzl@leepv Tenp]$ salloc -A deep -p dp-cn -N 4 -n 8 -t 00:30:00 srun --pty --interactive /bin/bash
[kreutzl@ip-cnO1 Tenp] $ srun -N 4 -n 8 ./MPI_Hel | oWorl d

Hello World fromrank 3 of 8 on dp-cn02
Hello World fromrank 7 of 8 on dp-cn04
Hello World fromrank 2 of 8 on dp-cn02
Hello World fromrank 6 of 8 on dp-cn04
Hello World fromrank 0 of 8 on dp-cnO1l
Hello World fromrank 4 of 8 on dp-cn03
Hello World fromrank 1 of 8 on dp-cn01l
Hello World fromrank 5 of 8 on dp-cn03

Once you get to the compute node, start your application using sr un. Note that the number of tasks used is the same as specified in the initial sr un
command above (4 nodes with two tasks each). It's also possible to use less nodes in the sr un command. So the following command would work as
well:

[kreutzi@lp-cn01l Tenp]$ srun -N1 -n 1 ./MPl_HelloWrld
Hello World fromrank 0 of 1 on dp-cn01

Running directly from the front ends

You can run the application directly from the frontend, bypassing the shell. Do not forget to set the correct environment for running your executable on
the login node as this will be used for execution with sr un.

[kreutzl@leepv Tenp]$ mi GCC/ 10.3.0 ParaStati onMPl/5.4.9-1
[kreutzl@leepv Tenp]$ srun -A deep -p dp-cn -N 4 -n 8 -t 00:30:00 ./ Ml _HelloWrld

Hello World fromrank 7 of 8 on dp-cn04
Hello World fromrank 3 of 8 on dp-cn02
Hello World fromrank 6 of 8 on dp-cn04
Hello World fromrank 2 of 8 on dp-cn02
Hello World fromrank 4 of 8 on dp-cn03
Hello World fromrank 0 of 8 on dp-cn01
Hello World fromrank 1 of 8 on dp-cn01
Hello World fromrank 5 of 8 on dp-cn03

It can be useful to create an allocation which can be used for several runs of your job:

[kreutzl@leepv Tenp]$ salloc -A deep -p dp-cn -N 4 -n 8 -t 00:30: 00
salloc: Granted job allocation 69263
[kreutzl@eepv Tenp]$ srun ./ MPI_Hel l oWorld

Hello World fromrank 7 of 8 on dp-cn04
Hello World fromrank 3 of 8 on dp-cn02
Hello World fromrank 6 of 8 on dp-cn04
Hello World fromrank 2 of 8 on dp-cn02
Hello World fromrank 5 of 8 on dp-cn03

WikiPrint - from Polar Technologies

Hello World fromrank 1 of 8 on dp-cn01
Hello World fromrank 4 of 8 on dp-cn03
Hello Wrld fromrank 0 of 8 on dp-cnO1l

several nore runs
[kreutz1@leepv Tenp]$ exit

exit
sal l oc: Relinquishing job allocation 69263

Note that in this case the - Nand - n options for the sr un command can be skipped (they default to the corresponding options given to sal | oc).
Batch script
As stated above, it is recommended to load the necessary modules within the script and submit the script from a clean environment.

The following script hel | o_cl ust er. sh will unload all modules and load the modules required for executing the given binary:

#!/ bi n/ bash

#SBATCH - -partition=dp-esb

#SBATCH - A deep

#SBATCH - N 4

#SBATCH -n 8

#SBATCH -0 / p/ proj ect/cdeep/ kreutzl/ hell o_cl uster-9% . out
#SBATCH -e /p/project/cdeep/ kreutzl/ hello_cluster-%.err
#SBATCH - -ti me=00: 10: 00

m purge
m GCC Par aSt ati onMPI
srun ./ MPI _Hel |l oWorl d

This script requests 4 nodes of the ESB module with 8 tasks, specifies the stdout and stderr files, and asks for 10 minutes of walltime. You can submit
the job script as follows:

[kreutzl@leepv Tenp]$ sbatch hello_cluster.sh
Subnitted batch job 69264

... and check what it's doing:

[kreutzl@leepv Tenp]$ squeue -u $USER
JOBI D PARTI TI ON NAMVE USER ST TIME NODES NODEL| ST(REASON)
69264 dp-cn hello_cl kreutzl CG 0: 04 4 dp-cn[01- 04]

Once finished, you can check the result (and the error file if needed)

[kreutzl@eepv Tenp]$ cat /p/project/cdeep/ kreutzl/ hello_cluster-69264. out

Hello World fromrank 7 of 8 on dp-esbh37
Hello World fromrank 3 of 8 on dp-esb35
Hello World fromrank 5 of 8 on dp-esb36
Hello World fromrank 1 of 8 on dp-esbh34
Hello World fromrank 6 of 8 on dp-esbh37
Hello World fromrank 2 of 8 on dp-esh35
Hello World fromrank 4 of 8 on dp-esh36
Hello World fromrank 0 of 8 on dp-esbh34

Information on past jobs and accounting

The sacct command can be used to enquire the Slurm database about a past job.

WikiPrint - from Polar Technologies

[kreutzl@eepv Tenp]$ sacct -j 69268

Jobl D JobNane Partition Account Al | ocCPUS State ExitCode
69268+0 bash dp-cn deepest -a+ 96 COWPLETED 0:0
69268+0. 0 MPI _Hel | o+ deepest - a+ 2 COWPLETED 0:0
69268+1 bash dp- dam deepest - a+ 384 COWPLETED 0:0

On the Cluster (CM) nodes it's possible to query the consumed energy for a certain job:

[kreutzl@leepv kreutzl] $ sacct -o ConsunedEner gy, JobNare, Jobl D, CPUTi me, Al | ocNodes -j 69326

ConsunedEner gy JobNane Jobl D CPUTI ne Al | ocNodes
496. 70K hpl _MKL_O+ 69326 16: 28: 48
0 bat ch 69326. bat ch 16: 28: 48
496. 70K xIl i npack_+ 69326. 0 08: 10: 24 1

This feature will also be for the ESB nodes.
Advanced topics

For further details on the batchsystem and pssl| ur mwhich is used on the DEEP system as well as on the JSC production systems, please refer to the
in-depth description for using the ?Batchsystem on Jureca. Among extended examples for allocation of nodes you can find information on job steps,
dependency chains and multithreading there. If you are interested in pinning of threads and tasks to certain CPUs or cores, please also take a look into
the 2Processor Anffinity sections of the Jureca documentation. Most of the information provided there will also refer to the DEEP system.

FAQ

Is there a cheat sheet for all main Slurm commands?
Yes, it is available ?here.
Why's my job not running?

You can check the state of your job with

scontrol show job <job id>

In the output, look for the Reason field.

You can check the existing reservations using

scontrol show res

How can | check which jobs are running in the machine?

Please use the squeue command (the "-u $USER" option to only list jobs belonging to your user id). A graphical overview can be displayed using
sl ur nt op command.

How do | do chain jobs with dependencies?

Please confer the sbat ch/sr un man page, especially the

-d, --dependency=<dependency_list>

entry.
Also, jobs can be chained after they have been submitted using the scont r ol command by updating their Dependency field.

How can check the status of partitions and nodes?

https://apps.fz-juelich.de/jsc/hps/jureca/batchsystem.html?highlight=multithreading#allocations-jobs-and-job-steps
https://apps.fz-juelich.de/jsc/hps/jureca/affinity.html
https://slurm.schedmd.com/pdfs/summary.pdf

WikiPrint - from Polar Technologies

The main command to use is si nf 0. By default, when called alone, si nf o will list the available partitions and the number of nodes in each partition in a
given status. For example:

[deani ci sl@leepv hybridhello]$ sinfo
PARTI TI ON AVAIL TIMELIMT NODES STATE NODELI ST

sdv up 20: 00: 00 11 idl e deeper-sdv[06- 16]

knl up 20: 00: 00 1 drain knl 01

knl up 20: 00: 00 3 idle knl[04-06]

knl 256 up 20: 00: 00 1 drain knl 01

knl 256 up 20:00: 00 1 idle knl 05

knl 272 up 20:00: 00 2 idle knl[04,06]

snc4 up 20:00: 00 1 idle knl 05

extoll up 20: 00: 00 11 idl e deeper-sdv[06-16]

m - gpu up 20: 00: 00 3 idl e nl-gpu[01-03]

dp-cn up 20: 00: 00 1 drain dp-cn33

dp-cn up 20: 00: 00 5 resv dp-cn[09-10, 25, 49- 50]

dp-cn up 20: 00: 00 44 idle dp-cn[01-08, 11- 24, 26- 32, 34- 48]
dp- dam up 20: 00: 00 1 drai n* dp-danD8

dp- dam up 20:00: 00 2 drain dp-danf03, 07]

dp- dam up 20:00: 00 3 resv dp-danf 05, 09- 10]

dp- dam up 20: 00: 00 2 alloc dp-dani01, 04]

dp- dam up 20: 00: 00 8 idl e dp-danf 02, 06, 11- 16]

dp- dam ext up 20: 00: 00 2 resv dp-danf 09-10]

dp- dam ext up 20: 00: 00 6 idl e dp-danf11-16]

dp- esb up 20: 00: 00 51 drain* dp-esb[11, 26-75]

dp- esb up 20: 00: 00 2 drain dp-esb[08, 23]

dp- esb up 20:00: 00 2 alloc dp-esb[09-10]

dp- esb up 20:00: 00 20 idl e dp-esb[01-07, 12- 22, 24- 25]
dp- sdv-esb up 20: 00: 00 2 resv dp-sdv-esb[01-02]

psgw- cl ust er up 20: 00: 00 1 idle nfgwol

psgw boost er up 20: 00: 00 1 idl e nfgwd2

debug up 20: 00: 00 1 drai n* dp-danD8

debug up 20: 00: 00 4 drain dp-cn33,dp-danf03,07], knl 01
debug up 20: 00: 00 10 resv dp-cn[09-10, 25, 49-50] , dp- danf{ 05, 09- 10] , dp- sdv- esb[01- 02]
debug up 20:00: 00 2 alloc dp-danf01, 04]

debug up 20:00: 00 69 idl e deeper-sdv[06-16], dp-cn[01-08, 11- 24, 26- 32, 34- 48], dp- danf 02, 06, 11- 16] , knl [04- 06

Please refer to the man page for si nf o for more information.

Can | join stderr and stdout like it was done with - j oe in Torque?

Not directly. In your batch script, redirect stdout and stderr to the same file:

#sh ... #SBATCH -0 /point/to/the/common/logfile-%.|og #SBATCH -e /point/to/the/common/logfile-%.log ...

(The % will place the job id in the output file). N.B. It might be more efficient to redirect the output of your script's commands to a dedicated file.

	Information about the batch system (SLURM)
	Overview
	Available Partitions
	Remark about environment
	An introductory example
	From a shell on a node
	Running directly from the front ends
	Batch script

	Information on past jobs and accounting
	Advanced topics
	FAQ
	Is there a cheat sheet for all main Slurm commands?
	Why's my job not running?
	How can I check which jobs are running in the machine?
	How do I do chain jobs with dependencies?
	How can check the status of partitions and nodes?
	Can I join stderr and stdout like it was done with -joe in Torque?

