
Wikiprint Book

Title: Information about the batch system (SLURM)

Subject: DEEP - Public/User_Guide/Batch_system

Version: 63

Date: 19.05.2024 20:16:34

WikiPrint - from Polar Technologies

2

Table of Contents

Information about the batch system (SLURM) 3

Overview 3

Available Partitions 3

Remark about environment 3

An introductory example 3

From a shell on a node 3

Running directly from the front ends 4

Batch script 5

Job chains 5

Information on past jobs and accounting 6

FAQ 6

Is there a cheat sheet for all main Slurm commands? 6

Why's my job not running? 6

How can I check which jobs are running in the machine? 6

How do I do chain jobs with dependencies? 6

How can check the status of partitions and nodes? 6

Can I join stderr and stdout like it was done with -joe in Torque? 7

WikiPrint - from Polar Technologies

3

Information about the batch system (SLURM)

The DEEP prototype systems are running SLURM for resource management. Documentation of Slurm can be found ?here.

Overview

Slurm offers interactive and batch jobs (scripts submitted into the system). The relevant commands are srun and sbatch. The srun command can be

used to spawn processes (please do not use mpiexec), both from the frontend and from within a batch script. You can also get a shell on a node to

work locally there (e.g. to compile your application natively for a special platform or module).

Available Partitions

Please note that there is no default partition configured. In order to run a job, you have to specify one of the following partitions, using the

--partition=... switch:

Name Description

dp-cn dp-cn[01-50], DEEP-EST Cluster nodes (Xeon Skylake)

dp-dam
dp-dam[01-16], DEEP-EST Dam nodes (Xeon Cascadelake + 1

V100 + 1 Stratix 10)

dp-dam-ext
dp-dam[09-16], DEEP-EST Dam nodes connected with Extoll

Tourmalet

dp-esb-ib
dp-esb[26-75], DEEP-EST ESB nodes connected with IB EDR

(Xeon Cascadelake + 1 V100)

dp-esb-ext dp-esb[01-25], DEEP-EST ESB nodes connected with Extoll Fabri3)

dp-sdv-esb
dp-sdv-esb[01-02], DEEP-EST ESB Test nodes (Xeon Cascadelake

+ 1 V100)

ml-gpu ml-gpu[01-03], GPU test nodes for ML applications (4 V100 cards)

knl knl[01,04-06], KNL nodes

knl256 knl[01,05], KNL nodes with 64 cores

knl272 knl[04,06], KNL nodes with 68 cores

snc4 knl[05], KNL node in snc4 memory mode

debug all compute nodes (no gateways)

Anytime, you can list the state of the partitions with the sinfo command. The properties of a partition can be seen using

scontrol show partition <partition>

Remark about environment

By default, Slurm passes the environment from your job submission session directly to the execution environment. Please be aware of this when running

jobs with srun or when submitting scripts with sbatch. This behavior can be controlled via the --export option. Please refer to the ?Slurm

documentation to get more information about this.

In particular, when submitting job scripts, it is recommended to load the necessary modules within the script and submit the script from a clean

environment.

An introductory example

Suppose you have an mpi executable named hello_mpi. There are three ways to start the binary.

From a shell on a node

First, start a shell on a node. Assume you would like to run your mpi task on 4 cluster nodes with 2 tasks per node:

https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/

WikiPrint - from Polar Technologies

4

[kreutz1@deepv /p/project/cdeep/kreutz1/Temp]$ srun -A deep -p dp-cn -N 4 -n 8 -t 00:30:00 --pty --interactive /bin/bash -i

[kreutz1@dp-cn01 /p/project/cdeep/kreutz1/Temp]$

The environment is transported to the remote shell, no .profile, .bashrc, … are sourced (especially not the modules default from

/etc/profile.d/modules.sh). As of March 2020, an account has to be specified using the --account (short -A) option, which is "deep" for the

project members. For people not included in the DEEP-EST project, please use the "Budget" name you received along with your account creation.

Once you get to the compute node, start your application using srun. Note that the number of tasks used is the same as specified in the initial srun

command above (4 nodes with two tasks each):

[kreutz1@deepv Temp]$ salloc -A deep -p dp-cn -N 4 -n 8 -t 00:30:00 srun --pty --interactive /bin/bash -i

[kreutz1@dp-cn01 Temp]$ srun -N 2 -n 8 ./MPI_HelloWorld

Hello World from rank 3 of 8 on dp-cn02

Hello World from rank 7 of 8 on dp-cn04

Hello World from rank 2 of 8 on dp-cn02

Hello World from rank 6 of 8 on dp-cn04

Hello World from rank 0 of 8 on dp-cn01

Hello World from rank 4 of 8 on dp-cn03

Hello World from rank 1 of 8 on dp-cn01

Hello World from rank 5 of 8 on dp-cn03

You can ignore potential warnings about the cpu binding. ParaStation will pin your processes.

If you just need to one node to run your interactive session on you can simply use the srun command (without salloc), e.g.:

[kreutz1@deepv ~]$ srun -A deep -N 1 -n 8 -p dp-cn -t 00:30:00 --pty --interactive bash -i

[kreutz1@dp-cn22 ~]$ srun -n 8 hostname

dp-cn22

dp-cn22

dp-cn22

dp-cn22

dp-cn22

dp-cn22

dp-cn22

dp-cn22

Running directly from the front ends

You can run the application directly from the frontend, bypassing the shell. Do not forget to set the correct environment for running your executable on

the login node as this will be used for execution with srun.

[kreutz1@deepv Temp]$ ml GCC/10.3.0 ParaStationMPI/5.4.9-1

[kreutz1@deepv Temp]$ srun -A deep -p dp-cn -N 4 -n 8 -t 00:30:00 ./MPI_HelloWorld

Hello World from rank 7 of 8 on dp-cn04

Hello World from rank 3 of 8 on dp-cn02

Hello World from rank 6 of 8 on dp-cn04

Hello World from rank 2 of 8 on dp-cn02

Hello World from rank 4 of 8 on dp-cn03

Hello World from rank 0 of 8 on dp-cn01

Hello World from rank 1 of 8 on dp-cn01

Hello World from rank 5 of 8 on dp-cn03

It can be useful to create an allocation which can be used for several runs of your job:

[kreutz1@deepv Temp]$ salloc -A deep -p dp-cn -N 4 -n 8 -t 00:30:00

salloc: Granted job allocation 69263

[kreutz1@deepv Temp]$ srun ./MPI_HelloWorld

Hello World from rank 7 of 8 on dp-cn04

Hello World from rank 3 of 8 on dp-cn02

Hello World from rank 6 of 8 on dp-cn04

WikiPrint - from Polar Technologies

5

Hello World from rank 2 of 8 on dp-cn02

Hello World from rank 5 of 8 on dp-cn03

Hello World from rank 1 of 8 on dp-cn01

Hello World from rank 4 of 8 on dp-cn03

Hello World from rank 0 of 8 on dp-cn01

...

several more runs

...

[kreutz1@deepv Temp]$ exit

exit

salloc: Relinquishing job allocation 69263

Note that in this case the -N and -n options for the srun command can be skipped (they default to the corresponding options given to salloc).

Batch script

As stated above, it is recommended to load the necessary modules within the script and submit the script from a clean environment.

The following script hello_cluster.sh will unload all modules and load the modules required for executing the given binary:

#!/bin/bash

#SBATCH --partition=dp-esb

#SBATCH -A deep

#SBATCH -N 4

#SBATCH -n 8

#SBATCH -o /p/project/cdeep/kreutz1/hello_cluster-%j.out

#SBATCH -e /p/project/cdeep/kreutz1/hello_cluster-%j.err

#SBATCH --time=00:10:00

ml purge

ml GCC ParaStationMPI

srun ./MPI_HelloWorld

This script requests 4 nodes of the ESB module with 8 tasks, specifies the stdout and stderr files, and asks for 10 minutes of walltime. You can submit

the job script as follows:

[kreutz1@deepv Temp]$ sbatch hello_cluster.sh

Submitted batch job 69264

… and check what it's doing:

[kreutz1@deepv Temp]$ squeue -u $USER

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 69264 dp-cn hello_cl kreutz1 CG 0:04 4 dp-cn[01-04]

Once finished, you can check the result (and the error file if needed)

[kreutz1@deepv Temp]$ cat /p/project/cdeep/kreutz1/hello_cluster-69264.out

Hello World from rank 7 of 8 on dp-esb37

Hello World from rank 3 of 8 on dp-esb35

Hello World from rank 5 of 8 on dp-esb36

Hello World from rank 1 of 8 on dp-esb34

Hello World from rank 6 of 8 on dp-esb37

Hello World from rank 2 of 8 on dp-esb35

Hello World from rank 4 of 8 on dp-esb36

Hello World from rank 0 of 8 on dp-esb34

Job chains

WikiPrint - from Polar Technologies

6

Please refer to the FAQ for creation of job chains and implementing job dependencies. If you would like to implement workflows, take a look at the

Workflows section.

Information on past jobs and accounting

The sacct command can be used to enquire the Slurm database about a past job.

[kreutz1@deepv Temp]$ sacct -j 69268

 JobID JobName Partition Account AllocCPUS State ExitCode

------------ ---------- ---------- ---------- ---------- ---------- --------

69268+0 bash dp-cn deepest-a+ 96 COMPLETED 0:0

69268+0.0 MPI_Hello+ deepest-a+ 2 COMPLETED 0:0

69268+1 bash dp-dam deepest-a+ 384 COMPLETED 0:0

On the Cluster (CM) nodes it's possible to query the consumed energy for a certain job:

[kreutz1@deepv kreutz1]$ sacct -o ConsumedEnergy,JobName,JobID,CPUTime,AllocNodes -j 69326

ConsumedEnergy JobName JobID CPUTime AllocNodes

-------------- ---------- ------------ ---------- ----------

 496.70K hpl_MKL_O+ 69326 16:28:48 1

 0 batch 69326.batch 16:28:48 1

 496.70K xlinpack_+ 69326.0 08:10:24 1

This feature will also be for the ESB nodes.

FAQ

Is there a cheat sheet for all main Slurm commands?

Yes, it is available ?here.

Why's my job not running?

You can check the state of your job with

scontrol show job <job id>

In the output, look for the Reason field.

You can check the existing reservations using

scontrol show res

How can I check which jobs are running in the machine?

Please use the squeue command (the "-u $USER" option to only list jobs belonging to your user id).

How do I do chain jobs with dependencies?

Please confer the sbatch/srun man page, especially the

-d, --dependency=<dependency_list>

entry.

Also, jobs can be chained after they have been submitted using the scontrol command by updating their Dependency field.

How can check the status of partitions and nodes?

https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/Batch_system#FAQ
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/Workflows
https://slurm.schedmd.com/pdfs/summary.pdf

WikiPrint - from Polar Technologies

7

The main command to use is sinfo. By default, when called alone, sinfo will list the available partitions and the number of nodes in each partition in a

given status. For example:

[deamicis1@deepv hybridhello]$ sinfo

PARTITION AVAIL TIMELIMIT NODES STATE NODELIST

sdv up 20:00:00 11 idle deeper-sdv[06-16]

knl up 20:00:00 1 drain knl01

knl up 20:00:00 3 idle knl[04-06]

knl256 up 20:00:00 1 drain knl01

knl256 up 20:00:00 1 idle knl05

knl272 up 20:00:00 2 idle knl[04,06]

snc4 up 20:00:00 1 idle knl05

extoll up 20:00:00 11 idle deeper-sdv[06-16]

ml-gpu up 20:00:00 3 idle ml-gpu[01-03]

dp-cn up 20:00:00 1 drain dp-cn33

dp-cn up 20:00:00 5 resv dp-cn[09-10,25,49-50]

dp-cn up 20:00:00 44 idle dp-cn[01-08,11-24,26-32,34-48]

dp-dam up 20:00:00 1 drain* dp-dam08

dp-dam up 20:00:00 2 drain dp-dam[03,07]

dp-dam up 20:00:00 3 resv dp-dam[05,09-10]

dp-dam up 20:00:00 2 alloc dp-dam[01,04]

dp-dam up 20:00:00 8 idle dp-dam[02,06,11-16]

dp-dam-ext up 20:00:00 2 resv dp-dam[09-10]

dp-dam-ext up 20:00:00 6 idle dp-dam[11-16]

dp-esb up 20:00:00 51 drain* dp-esb[11,26-75]

dp-esb up 20:00:00 2 drain dp-esb[08,23]

dp-esb up 20:00:00 2 alloc dp-esb[09-10]

dp-esb up 20:00:00 20 idle dp-esb[01-07,12-22,24-25]

dp-sdv-esb up 20:00:00 2 resv dp-sdv-esb[01-02]

psgw-cluster up 20:00:00 1 idle nfgw01

psgw-booster up 20:00:00 1 idle nfgw02

debug up 20:00:00 1 drain* dp-dam08

debug up 20:00:00 4 drain dp-cn33,dp-dam[03,07],knl01

debug up 20:00:00 10 resv dp-cn[09-10,25,49-50],dp-dam[05,09-10],dp-sdv-esb[01-02]

debug up 20:00:00 2 alloc dp-dam[01,04]

debug up 20:00:00 69 idle deeper-sdv[06-16],dp-cn[01-08,11-24,26-32,34-48],dp-dam[02,06,11-16],knl[04-06],ml-gpu[01-03]

Please refer to the man page for sinfo for more information.

Can I join stderr and stdout like it was done with -joe in Torque?

Not directly. In your batch script, redirect stdout and stderr to the same file:

...

#SBATCH -o /point/to/the/common/logfile-%j.log

#SBATCH -e /point/to/the/common/logfile-%j.log

...

(The %j will place the job id in the output file). N.B. It might be more efficient to redirect the output of your script's commands to a dedicated file.

	Information about the batch system (SLURM)
	Overview
	Available Partitions
	Remark about environment
	An introductory example
	From a shell on a node
	Running directly from the front ends
	Batch script

	Job chains
	Information on past jobs and accounting
	FAQ
	Is there a cheat sheet for all main Slurm commands?
	Why's my job not running?
	How can I check which jobs are running in the machine?
	How do I do chain jobs with dependencies?
	How can check the status of partitions and nodes?
	Can I join stderr and stdout like it was done with -joe in Torque?

