Table of Contents

Information about the batch system (SLURM)
Overview
Available Partitions
Remark about environment
An introductory example
From a shell on a node
Running directly from the front ends
Batch script
Heterogeneous jobs
Heterogeneous jobs with MPI communication across modules
Workflows
slurm_workflow Library
Information on past jobs and accounting
FAQ
Is there a cheat sheet for all main Slurm commands?
Why's my job not running?
How can | check which jobs are running in the machine?
How do | do chain jobs with dependencies?
How can check the status of partitions and nodes?
Can | join stderr and stdout like it was done with -joe in Torque?

WikiPrint - from Polar Technologies

O O~ A W WWNDNDNDDNDDN

R R R R R R R R
NP RPPRPPRPPPOO

WikiPrint - from Polar Technologies

Information about the batch system (SLURM)

Please confer /etc/slurm/README.

The documentation of Slurm can be found ?here.

Overview

Slurm offers interactive and batch jobs (scripts submitted into the system). The relevant commands are sr un and sbat ch. The sr un command can be
used to spawn processes (please do not use mpiexec), both from the frontend and from within a batch script. You can also get a shell on a node to
work locally there (e.g. to compile your application natively for a special platform).

Available Partitions

Please note that there is no default partition configured. In order to run a job, you have to specify one of the following partitions, using the
--partition=. .. switch:

Name Description

dp-cn dp-cn[01-50], DEEP-EST Cluster nodes (Xeon Skylake)

dp-dam dp-dam[01-16], DEEP-EST Dam nodes (Xeon Cascadelake + 1
P V100 + 1 Stratix 10)

db-dam-ext dp-dam[09-16], DEEP-EST Dam nodes connected with Extoll
P Tourmalet

do-esb dp-esb[01-25], DEEP-EST Esb nodes (Xeon Cascadelake + 1
P V100)

do-sdv-esb dp-sdv-esb[01-02], DEEP-EST ESB Test nodes (Xeon Cascadelake
P +1V100)

- ml-gpu[01-03], GPU test nodes for ML applications (up to 4 V100

g cards)

sdv deeper-sdv[01-16], cluster test nodes with Xeon Haswell CPU

extoll deeper-sdv[01-16] (these nodes use an Extoll Tourmalet fabric)

knl knl[01,04-06], KNL nodes

knl256 knl[01,05], KNL nodes with 64 cores

knl272 knl[04,06], KNL nodes with 68 cores

snc4 knl[05], KNL node in snc4 memory mode

psgw-cluster gateway test node

psgw-booster gateway test node

debug all compute nodes (no gateways)

Anytime, you can list the state of the partitions with the si nf o command. The properties of a partition can be seen using

scontrol show partition <partition>

Remark about environment

By default, Slurm passes the environment from your job submission session directly to the execution environment. Please be aware of this when running
jobs with sr un or when submitting scripts with sbat ch. This behavior can be controlled via the - - expor t option. Please refer to the 2Slurm
documentation to get more information about this.

In particular, when submitting job scripts, it is recommended to load the necessary modules within the script and submit the script from a clean
environment.

https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/

WikiPrint - from Polar Technologies

An introductory example
Suppose you have an mpi executable named hel | o_npi . There are three ways to start the binary.
From a shell on a node

First, start a shell on a node. You would like to run your mpi task on 4 machines with 2 tasks per machine:

[kreutz1@eepv /p/project/cdeep/ kreutzl/ Tenp]$ srun -A deep -p dp-cn -N 4 -n 8 -t 00:30:00 --pty /bin/bash -i
[kreutz1@p-cn0l1 /p/ project/cdeep/ kreutzl/ Tenp] $

The environment is transported to the remote shell, no . profil e, . bashrc, ... are sourced (especially not the modules default from
/etc/profile.d/ modul es. sh). As of March 2020, an account has to be specified using the - - account (short - A) option, which is "deep" for the
project members. For people not included in the DEEP-EST project, please use the "Budget" name you received along with your account creation.

Once you get to the compute node, start your application using sr un. Note that the number of tasks used is the same as specified in the initial sr un
command above (4 nodes with two tasks each):

[kreutzl@eepv Tenp]$ srun -A deep -p dp-cn -N 4 -n 8 -t 00:30:00 --pty /bin/bash -i
[kreutzl@p-cn0l Tenp]$ srun ./ MPl_Hel |l oWorl d

Hello World fromrank 3 of 8 on dp-cn02
Hello World fromrank 7 of 8 on dp-cn04
Hello World fromrank 2 of 8 on dp-cn02
Hello World fromrank 6 of 8 on dp-cn04
Hello World fromrank 0 of 8 on dp-cn01
Hello World fromrank 4 of 8 on dp-cn03
Hello World fromrank 1 of 8 on dp-cn01l
Hello World fromrank 5 of 8 on dp-cn03

You can ignore potential warnings about the cpu binding. ParaStation will pin your processes.
Running directly from the front ends

You can run the application directly from the frontend, bypassing the shell:

[kreutzl@leepv Tenp]$ srun -A deep -p dp-cn -N 4 -n 8 -t 00:30:00 ./ Ml _Hell oWrld

Hello World fromrank 7 of 8 on dp-cn04
Hello World fromrank 3 of 8 on dp-cn02
Hello World fromrank 6 of 8 on dp-cn04
Hello World fromrank 2 of 8 on dp-cn02
Hello World fromrank 4 of 8 on dp-cn03
Hello World fromrank 0 of 8 on dp-cnO1l
Hello World fromrank 1 of 8 on dp-cn01l
Hello World fromrank 5 of 8 on dp-cn03

In this case, it can be useful to create an allocation which you can use for several runs of your job:

[kreutzl@leepv Tenp]$ salloc -A deep -p dp-cn -N 4 -n 8 -t 00:30: 00
salloc: Granted job allocation 69263
[kreutzl@eepv Tenp]$ srun ./ MPI_Hel l oWorld

Hello World fromrank 7 of 8 on dp-cn04
Hello World fromrank 3 of 8 on dp-cn02
Hello World fromrank 6 of 8 on dp-cn04
Hello World fromrank 2 of 8 on dp-cn02
Hello World fromrank 5 of 8 on dp-cn03
Hello World fromrank 1 of 8 on dp-cn01l
Hello World fromrank 4 of 8 on dp-cn03
Hello World fromrank 0 of 8 on dp-cn01

several nore runs

WikiPrint - from Polar Technologies

[kreut z1@eepv Tenp] $ exit
exit
salloc: Relinquishing job allocation 69263

Batch script

Given the following script hel | o_cl ust er. sh:

#!/ bi n/ bash

#SBATCH --partition=dp-cn

#SBATCH - A deep

#SBATCH - N 4

#SBATCH -n 8

#SBATCH -0 / p/ proj ect/cdeep/ kreutzl/ hello_cluster-9% . out
#SBATCH -e /p/ project/cdeep/ kreutzl/ hello_cluster-%.err
#SBATCH - - ti me=00: 10: 00

srun ./ MPI _Hel | oWorld

This script requests 4 nodes with 8 tasks, specifies the stdout and stderr files, and asks for 10 minutes of walltime. Submit:

[kreutzl@leepv Tenp]$ sbatch hello_cluster.sh
Subnmitted batch job 69264

Check what it's doing:

[kreutzl@leepv Tenp] $ squeue -u $USER
JOBI D PARTI TI ON NAMVE USER ST TIME NODES NODELI ST(REASON)
69264 dp-cn hello_cl kreutzl CG 0: 04 4 dp-cn[01- 04]

Check the result:

[kreutzl@eepv Tenp]$ cat /p/project/cdeep/ kreutzl/ hello_cluster-69264. out

Hello World fromrank 6 of 8 on dp-cn04
Hello World fromrank 3 of 8 on dp-cn02
Hello World fromrank 0 of 8 on dp-cn01
Hello World fromrank 4 of 8 on dp-cn03
Hello World fromrank 2 of 8 on dp-cn02
Hello World fromrank 7 of 8 on dp-cn04
Hello World fromrank 5 of 8 on dp-cn03
Hello World fromrank 1 of 8 on dp-cnO1l

Heterogeneous jobs

As of version 17.11 of Slurm, heterogeneous jobs are supported. For example, the user can run:

srun --account =deep --partition=dp-cn -N 1 -n 1 hostnane : --partition=dp-dam-N 1 -n 1 hostnane
dp-cn01
dp- danD1

Please notice the : separating the definitions for each sub-job of the heterogeneous job. Also, please be aware that it is possible to have more than two
sub-jobs in a heterogeneous job.

The user can also request several sets of nodes in a heterogeneous allocation using sal | oc. For example:

salloc --partition=dp-cn -N 2 : --partition=dp-dam-N 4

WikiPrint - from Polar Technologies

In order to submit a heterogeneous job via sbat ch, the user needs to set the batch script similar to the following one:

srun ./app_cn : ./app_dam

Here the packj ob keyword allows to define Slurm parameters for each sub-job of the heterogeneous job. Some Slurm options can be defined once at
the beginning of the script and are automatically propagated to all sub-jobs of the heterogeneous job, while some others (i.e. - - nodes or - - nt asks)
must be defined for each sub-job. You can find a list of the propagated options on the ?Slurm documentation.

When submitting a heterogeneous job with this colon notation using ParaStationMPI, a unique MPI _COVM WORLD is created, spanning across the two
partitions. If this is not desired, one can use the - - pack- gr oup key to submit independent job steps to the different node-groups of a heterogeneous
allocation:

srun --pack-group=0 ./app_cn ; srun --pack-group=1 ./app_dam

Using this configuration implies that inter-communication must be established manually by the applications during run time, if needed.
For more information about heterogeneous jobs please refer to the 2relevant page of the Slurm documentation.
Heterogeneous jobs with MPI communication across modules

In order to establish MPI communication across modules using different interconnect technologies, some special Gateway nodes must be used. On the
DEEP-EST system, MPI communication across gateways is needed only between Infiniband and Extoll interconnects.

Attention: Only ParaStation MPI supports MPI communication across gateway nodes.

This is an example job script for setting up an Intel MPI benchmark between a Cluster and a DAM node using a IB « Extoll gateway for MPI
communication:

#!/ bi n/ bash
Script to launch | MB PingPong between DAM CN using 1 Gat eway

Use the gateway allocation provided by SLURM
Use the packjob feature to | aunch separately CM and DAM execut abl e

Ceneral configuration of the job

https://slurm.schedmd.com/heterogeneous_jobs.html#submitting
https://slurm.schedmd.com/heterogeneous_jobs.html

WikiPrint - from Polar Technologies

#SBATCH - - j ob- nanme=nodul ar-i nb
#SBATCH - - account =deep

#SBATCH - - ti ne=00: 10: 00

#SBATCH - - out put =nodul ar - i nb- % . out
#SBATCH --error=nodul ar-inb-%.err

Configure the gateway daenon
#SBATCH - - gw_nun¥1l
#SBATCH - - gw_psgwd_per _node=1

Configure node and process count on the CM
#SBATCH --partition=dp-cn

#SBATCH - - nodes=1

#SBATCH - - nt asks- per - node=1

#SBATCH packj ob

Configure node and process count on the DAM
#SBATCH - -partition=dp- dam ext

#SBATCH - - nodes=1

#SBATCH - - nt asks- per - node=1

Echo job configuration

echo "DEBUG SLURM JOB_NODELI ST=$SLURM JOB_NODELI| ST"
echo "DEBUG SLURM NNODES=$SLURM NNODES"

echo "DEBUG SLURM TASKS_PER NODE=$SLURM TASKS_PER NODE"

Set the environment to use PS- M
nodul e --force purge

nodul e use $OTHERSTAGES

nodul e | oad St ages/ Devel - 2019a
nodul e [oad Intel

nodul e | oad ParaSt ati onMPI

Show the hosts we are running on
srun hostnane : hostnane

Execute
APP="_/1 MB- MPI 1 Uni band"
srun ${APP} : ${APP}

Attention: During the first part of 2020, only the DAM nodes will have Extoll interconnect, while the CM and the ESB nodes will be connected via
Infiniband. This will change later during the course of the project (expected Summer 2020), when the ESB will be equipped with Extoll connectivity
(Infiniband will be removed from the ESB and left only for the CM).

A general description of how the user can request and use gateway nodes is provided at ?this section of the JURECA documentation.
Attention: some information provided on the JURECA documentation do not apply for the DEEP system. In particular:

« as of 31/03/2020, the DEEP system has 2 gateway nodes.

« As of 09/01/2020 the gateway nodes are exclusive to the job requesting them. Given the limited number of gateway nodes available on the system,
this may change in the future.

* As of 09/04/2020 the xenv utility (necessary on JURECA to load modules for different architectures - Haswell and KNL) is not needed any more on
DEEP when using the latest version of ParaStationMPI (currently available in the Devel - 2019a stage and soon available on the default production
stage).

Workflows

The new version of the installed slurm now supports workflows. The idea is to have an overlap between the dependent jobs so that they can
communicate the data over the network instead of writing and reading it on storage. We have provided two ways to achieve a workflow. One way is to

https://apps.fz-juelich.de/jsc/hps/jureca/modular-jobs.html#mpi-traffic-across-modules

WikiPrint - from Polar Technologies

use the new del ay switch provided in sbat ch command. While the other method is to submit jobs with dependencies of type af t er ok and later the

independent job changes the dependency type of the dependent job to af t er

using our provided shared library (explained below). Jacopo has

developed an example project 2https://gitlab.version.fz-juelich.de/deamicis1l/mpi _connect test/-/tree/test zia workflows that uses all the features

discussed here.

The following simple example script helps understanding the mechanism of new del ay switch for workflows.

[hudal@leepv scripts]$ cat test.sh
#!/ bi n/ sh

NAME=$(host nane)

echo "$NAME: Going to sleep for $1 seconds"
sl eep $1

echo "$NAME: Awake"

[hudal@leepv scripts]$ cat batch_workflow sh
#!'/ bi n/ bash

#SBATCH -p sdv -N2 -t3

#SBATCH packj ob

#SBATCH -p sdv -N1 -t3 --delay 2

srun test.sh 175

[hudal@eepv scripts]$

In the above sbat ch script, the usage of - - del ay can be seen. It takes thee values in minutes. The idea is to delay the corresponding job of a
heterogeneous job by the provided number of minutes from the start of the first job in the job pack. After submission of this job pack, slurm divides it into
separate jobs at the time of the resource reservation. So you can see multiple jobs in the output of squeue command. Here is the example execution of

this script.

[hudal@leepv scripts]$ sbatch batch_workfl ow. sh
Subnitted batch job 81458
[hudal@leepv scripts]$ squeue -u hudal

JOBI D PARTI TI ON NAME USER ST
81458 sdv batch_wo hudal CF
81459 sdv batch_wo hudal PD

[hudal@leepv scripts]$

TIME NODES NODELI ST(REASON)

2 deeper-sdv[02- 03]
1 (Reservation)

Here the second job(81458) will start 2 minutes after the start of the first job(81459). Similarly, the output files will be different for each separated job in

the job pack. the final outputs are:

[hudal@leepv scripts]$ cat slurm 81458. out
deeper-sdv02: Going to sleep for 175 seconds
deeper-sdv03: Going to sleep for 175 seconds
deeper-sdv02: Awake

deeper-sdv03: Awake

[hudal@leepv scripts]$ cat slurm 81459. out
deeper-sdv01l: Going to sleep for 175 seconds

deeper -sdv01l: Awake

[hudal@leepv scripts]$

Another feature to note is that if there are multiple jobs in a job pack and any number of consecutive jobs have the same del ay values, they are

combined into a new heterogeneous job. Here is an example of such a script:

https://gitlab.version.fz-juelich.de/deamicis1/mpi_connect_test/-/tree/test_zia_workflows

WikiPrint - from Polar Technologies

[hudal@leepv scripts]$
#1/ bi n/ bash

#SBATCH -p sdv -N 2 -t
#SBATCH -J first

#SBATCH packj ob

#SBATCH -p sdv -N 1 -t
#SBATCH -J second

#SBATCH packj ob

#SBATCH -p sdv -N 1 -t
#SBATCH -J second

#SBATCH packj ob

#SBATCH -p sdv -N 2 -t
#SBATCH -J third

cat bat ch_wor kfl ow_conpl ex. sh

3

3 --delay 2
2 --delay 2
3 --delay 4

if ["$SLURM JOB_NAME" == "first"]
t hen
srun ./test.sh 150
elif ["$SLURM JOB_NAME" == "second"]
t hen
srun ./test.sh 150 : ./test.sh 115
elif ["$SLURM JOB_NAME"' == "third"]
t hen
srun ./test.sh 155
f

[hudal@leepv scripts]$

Note the del ay values for the second and third job in the script are equal. Also, note the usage of the environment variable SLURM _JOB_NAME in the
script to decide which command to run in which job. The example execution leads to the following:

[hudal@leepv scripts]$ sbatch batch_workfl ow_conpl ex. sh

Subnitted batch job 81460

[hudal@leepv scripts]$ squeue -u hudal

JOBI D PARTI TI ON

81461+0
81461+1
81463
81460

[hudal@eepv scripts]$

sdv
sdv
sdv
sdv

NAVE
second
second

third
first

USER ST
hudal PD
hudal PD
hudal PD
hudal PD

TIME NCODES NODELI ST(REASON)

0: 00
0: 00
0: 00
0: 00

1 (Resources)
1 (Resources)
2 (Resources)
2 (Resources)

Note that the submitted heterogeneous job has been divided into a single job (81460), a job pack (81461) and again a single job (81643). Similarly, three
different output files will be generated, one for each new job.

[hudal@leepv scripts]$ cat slurm 81460. out

deeper-sdv03: Going to sleep for
deeper-sdv04: CGoing to sleep for

deeper -sdv03: Awake
deeper - sdv04: Awake

150 seconds
150 seconds

WikiPrint - from Polar Technologies

[hudal@leepv scripts]$ cat slurm 81461. out
deeper-sdv01l: Going to sleep for 150 seconds
deeper-sdv02: Going to sleep for 115 seconds
deeper-sdv02: Awake

deeper-sdv0l: Awake

[hudal@leepv scripts]$ cat slurm 81463. out
deeper-sdv01l: Going to sleep for 155 seconds
deeper-sdv02: Going to sleep for 155 seconds
deeper-sdv01l: Awake

deeper-sdv02: Awake

[hudal@leepv scripts]$

If a job exits earlier than the allocated time asked by the user, the corresponding reservation for this job is deleted 5 minutes after the end of the job,
automatically and the resources become available for the other jobs. However, users should be careful with the requested time when submitting
workflows as the larger time values can delay the scheduling of the workflows depending on the situation of the resources.

The workflows created using del ay switch ensure overlap between the applications. The second method that includes dependencies among jobs, does
not ensure an overlap but avoids users to guess the time a job will take and how much should be the delay between jobs. The process is simple. A user
submits a job and later a dependent job with a dependency of type af t er ok. Inside the first (independent) job, the application running calls the function
provided in s ur m wor kf | owlibrary, that changes the dependency type of the dependent job to af t er . This enables the dependent job to be eligible
for allocation by slurm immediately. However, the allocation of resources depends upon the situation of resources available in the system. The following
script helps to submit jobs in the form of a chain with a provided dependency type.

[hudal@leepv scripts]$ cat chain_jobs. sh
#! [usr/ bi n/ env bash

if [$#-1t 3]

t hen
echo "$0: ERROR (M SSI NG ARGUMENTS) "
exit 1

fi

LOCKFI LE=$1

DEPENDENCY_TYPE=$2

shift 2

SUBM TSCRI PT=%*

if [-f $LOCKFILE]
t hen
if [["$DEPENDENCY TYPE' =~ ~(after|afterany|afterok|afternotok)$]]; then
DEPEND_JOBI D="head -1 $LOCKFI LE’
echo "sbatch --dependency=${ DEPENDENCY_TYPE} : ${ DEPEND JOBI D} $SUBM TSCRI PT"
JOBI D="sbhat ch --dependency=${ DEPENDENCY_TYPE} : ${ DEPEND_JOBI D} $SUBM TSCRI PT"
el se
echo "$0: ERROR (WRONG DEPENDENCY TYPE: choose anpbng 'after', 'afterany', 'afterok' or 'afternotok')"
fi
el se
echo "sbatch $SUBM TSCRI PT"
JOBI D="sbat ch $SUBM TSCRI PT"
fi

echo "RETURN: $JOBI D'
the JOBID is the last field of the output Iine
echo ${JOBI D##* } > $LOCKFI LE

exit O

WikiPrint - from Polar Technologies

Here is the example of submission.

[hudal@leepv scripts]$./chain_jobs.sh |ockfile afterok sinple_job.sh
sbat ch sinpl e_job. sh

RETURN: Subnitted batch job 98626

[hudal@leepv scripts]$./chain_jobs.sh lockfile afterok sinple_job.sh
sbat ch --dependency=afterok: 98626 sinple_job.sh

RETURN: Subnmitted batch job 98627

[hudal@leepv scripts]$./chain_jobs.sh lockfile afterok sinple_job.sh
sbat ch --dependency=afterok: 98627 sinple_job. sh

RETURN: Subnitted batch job 98628

[hudal@leepv scripts]$ squeue -u hudal

JOBI D PARTI TI ON NAMVE USER ST TI ME NODES NODELI ST(REASON)
98627 sdv sinple_j hudal PD 0: 00 2 (Dependency)
98628 sdv sinple_j hudal PD 0: 00 2 (Dependency)
98626 sdv sinple_j hudal R 0:21 2 deeper-sdv[01-02]

[hudal@leepv scripts]$ scontrol show job 98628 | grep Dependency
JobSt at e=PENDI NG Reason=Dependency Dependency=aft erok: 98627

[hudal@leepv scripts]$ cat |ockfile

98628

Note that the | ockf i | e contains the id of last submitted job.
sl ur m wor kf | owLibrary

We have developed a library that developers can use to change the reservation beginning times or dependency type of the dependent jobs in a workflow.
This library is called sl ur m wor kf | ow. The library has two functions.

The first function moves all the reservations of the remaining workflow jobs to an earlier time when the workflow is created using - - del ay switch.

| *

I'N: nunber of minutes fromnow The start time of the next reservation of the workflowis noved to this time if doable.
QUT: 0 successful, non zero unsuccessful.slurmw _error is set.
*/

int slurmw _nove_all _res(uint32_t t);

The second function changes the dependencies type of all jobs dependent on the current job from aft er ok: j ob_idtoafter:job_id.

/*
QUT: 0 successful, error no otherw se.
*/

int slurmchange_dep();

Call the above function to change all af t er ok: $(SLURM JOBI D) dependencies into {{{after:$(SLURM_JOBID)}} dependencies. This enables the jobs
in workflow eligible for allocation by Slurm.

The header file can be included using #i ncl ude <sl ur ni sl ur m wor kf | ow. h> and should be linked using - | sI ur m wor kf | owand - | sl urm
Information on past jobs and accounting

The sacct command can be used to enquire the Slurm database about a past job.

[kreutzl@eepv Tenp]$ sacct -j 69268

Jobl D JobNane Partition Account Al | ocCPUS State ExitCode
69268+0 bash dp-cn deepest -a+ 96 COWPLETED 0:0
69268+0. 0 MPI _Hel | o+ deepest - a+ 2 COWPLETED 0:0
69268+1 bash dp- dam deepest - a+ 384 COWPLETED 0:0

On the Cluster (CM) nodes it's possible to query the consumed energy for a certain job:

10

WikiPrint - from Polar Technologies

[kreutz1@eepv kreutzl]$ sacct -o ConsunedEner gy, JobName, Jobl D, CPUTi ne, Al | ocNodes -j

ConsunedEner gy JobNane Jobl D CPUTi ne Al | ocNodes
496. 70K hpl _MKL_O+ 69326 16: 28: 48
0 bat ch 69326. bat ch 16: 28: 48
496. 70K xIl i npack_+ 69326.0 08:10: 24

69326

This feature will also be for the ESB nodes.

FAQ

Is there a cheat sheet for all main Slurm commands?
Yes, it is available ?here.

Why's my job not running?

You can check the state of your job with

scontrol show job <job id>

In the output, look for the Reason field.

You can check the existing reservations using

scontrol show res

How can | check which jobs are running in the machine?

Please use the squeue command (the "-u $USER" option to only list jobs belonging to your user id).

How do | do chain jobs with dependencies?

Please confer the sbat ch/sr un man page, especially the

-d, --dependency=<dependency_|i st>

entry.

Also, jobs can be chained after they have been submitted using the scont r ol command by updating their Dependency field.

How can check the status of partitions and nodes?

The main command to use is si nf 0. By default, when called alone, si nf o will list the available partitions and the number of nodes in each partition in a

given status. For example:

[deami ci sl@leepv hybridhello]$ sinfo
PARTI TI ON AVAIL TIMELIMT NODES STATE NODELI ST

sdv up 20:00: 00 11 idl e deeper-sdv[06-16]

knl up 20: 00: 00 1 drain knl 01

knl up 20: 00: 00 3 idle knl[04-06]

knl 256 up 20: 00: 00 1 drain knl 01

knl 256 up 20: 00: 00 1 idle knl 05

knl 272 up 20: 00: 00 2 idle knl[04, 06]

snc4 up 20: 00: 00 1 idle knl 05

extol | up 20:00:00 11 i dl e deeper-sdv[06-16]

m - gpu up 20:00: 00 3 idle nl-gpu[01-03]

dp-cn up 20: 00: 00 1 drain dp-cn33

dp-cn up 20: 00: 00 5 resv dp-cn[09-10, 25, 49- 50]
dp-cn up 20: 00: 00 44 idle dp-cn[01-08, 11- 24, 26- 32, 34- 48]

11

https://slurm.schedmd.com/pdfs/summary.pdf

WikiPrint - from Polar Technologies

dp- dam up 20: 00: 00 1 drai n* dp-danD8

dp- dam up 20: 00: 00 2 drain dp-danf03, 07]

dp- dam up 20: 00: 00 3 resv dp-danf 05, 09- 10]

dp- dam up 20: 00: 00 2 alloc dp-dani01, 04]

dp- dam up 20:00: 00 8 idl e dp-danf02, 06, 11- 16]

dp- dam ext up 20:00: 00 2 resv dp-danf 09-10]

dp- dam ext up 20: 00: 00 6 idl e dp-danf11-16]

dp- esb up 20: 00: 00 51 drain* dp-esb[11, 26-75]

dp- esb up 20: 00: 00 2 drain dp-esb[08, 23]

dp- esb up 20: 00: 00 2 alloc dp-esb[09-10]

dp- esb up 20:00: 00 20 idl e dp-esb[01-07, 12-22, 24- 25]

dp- sdv-esb up 20:00:00 2 resv dp-sdv-esb[01-02]

psgw-cl ust er up 20:00: 00 1 idle nfgwol

psgw boost er up 20:00: 00 1 idle nfgwd2

debug up 20: 00: 00 1 drai n* dp-danD8

debug up 20: 00: 00 4 drain dp-cn33, dp-danf03,07], knl 01

debug up 20: 00: 00 10 resv dp-cn[09-10, 25, 49-50], dp- dan{ 05, 09- 10] , dp- sdv- esb[01- 02]
debug up 20: 00: 00 2 alloc dp-danf01, 04]

debug up 20: 00: 00 69 i dl e deeper-sdv[06-16], dp-cn[01-08, 11- 24, 26- 32, 34- 48], dp-dan{ 02, 06, 11- 16] , knl [04- 06

Please refer to the man page for si nf o for more information.
Can | join stderr and stdout like it was done with - j oe in Torque?

Not directly. In your batch script, redirect stdout and stderr to the same file:

(The % will place the job id in the output file). N.B. It might be more efficient to redirect the output of your script's commands to a dedicated file.

12

	Information about the batch system (SLURM)
	Overview
	Available Partitions
	Remark about environment
	An introductory example
	From a shell on a node
	Running directly from the front ends
	Batch script

	Heterogeneous jobs
	Heterogeneous jobs with MPI communication across modules

	Workflows
	slurm_workflow Library

	Information on past jobs and accounting
	FAQ
	Is there a cheat sheet for all main Slurm commands?
	Why's my job not running?
	How can I check which jobs are running in the machine?
	How do I do chain jobs with dependencies?
	How can check the status of partitions and nodes?
	Can I join stderr and stdout like it was done with -joe in Torque?

