Table of Contents

Information about the batch system (SLURM)
Overview
Available Partitions
Remark about environment
An introductory example
From a shell on a node
Running directly from the front ends
Batch script
Heterogeneous jobs
Heterogeneous jobs with MPI communication across modules
Information on past jobs and accounting
FAQ
Is there a cheat sheet for all main Slurm commands?
Why's my job not running?
How can | check which jobs are running in the machine?
How do | do chain jobs with dependencies?
How can check the status of partitions and nodes?

Can | join stderr and stdout like it was done with -joe in Torque?

What is the default binding/pinning behaviour on DEEP?
How do | use SMT on the DEEP CPUs?

WikiPrint - from Polar Technologies

© 00 ~NNNNNNOOORMDMWWWNNNDN

WikiPrint - from Polar Technologies

Information about the batch system (SLURM)

Please confer /etc/slurm/README.

The documentation of Slurm can be found ?here.

Overview

Slurm offers interactive and batch jobs (scripts submitted into the system). The relevant commands are sr un and sbat ch. The sr un command can be
used to spawn processes (please do not use mpiexec), both from the frontend and from within a batch script. You can also get a shell on a node to
work locally there (e.g. to compile your application natively for a special platform).

Available Partitions

Please note that there is no default partition configured. In order to run a job, you have to specify one of the following partitions, using the
--partition=. .. switch:

Name Description

dp-cn dp-cn[01-50], DEEP-EST Cluster nodes (Xeon Skylake)

dp-dam dp-dam[01-16], DEEP-EST Dam nodes (Xeon Cascadelake + 1
P V100 + 1 Stratix 10)

db-dam-ext dp-dam[09-16], DEEP-EST Dam nodes connected with Extoll
P Tourmalet

do-esb dp-esb[01-25], DEEP-EST Esb nodes (Xeon Cascadelake + 1
P V100)

do-sdv-esb dp-sdv-esb[01-02], DEEP-EST ESB Test nodes (Xeon Cascadelake
P +1V100)

- ml-gpu[01-03], GPU test nodes for ML applications (up to 4 V100

g cards)

sdv deeper-sdv[01-16], cluster test nodes with Xeon Haswell CPU

extoll deeper-sdv[01-16] (these nodes use an Extoll Tourmalet fabric)

knl knl[01,04-06], KNL nodes

knl256 knl[01,05], KNL nodes with 64 cores

knl272 knl[04,06], KNL nodes with 68 cores

snc4 knl[05], KNL node in snc4 memory mode

psgw-cluster gateway test node

psgw-booster gateway test node

debug all compute nodes (no gateways)

Anytime, you can list the state of the partitions with the si nf o command. The properties of a partition can be seen using

scontrol show partition <partition>

Remark about environment

By default, Slurm passes the environment from your job submission session directly to the execution environment. Please be aware of this when running
jobs with sr un or when submitting scripts with sbat ch. This behavior can be controlled via the - - expor t option. Please refer to the 2Slurm
documentation to get more information about this.

In particular, when submitting job scripts, it is recommended to load the necessary modules within the script and submit the script from a clean
environment.

https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/

WikiPrint - from Polar Technologies

An introductory example
Suppose you have an mpi executable named hel | o_npi . There are three ways to start the binary.
From a shell on a node

First, start a shell on a node. You would like to run your mpi task on 4 machines with 2 tasks per machine:

[kreutz1@eepv /p/project/cdeep/ kreutzl/ Tenp]$ srun -A deep -p dp-cn -N 4 -n 8 -t 00:30:00 --pty /bin/bash -i
[kreutz1@p-cn0l1 /p/ project/cdeep/ kreutzl/ Tenp] $

The environment is transported to the remote shell, no . profil e, . bashrc, ... are sourced (especially not the modules default from
/etc/profile.d/ modul es. sh). As of March 2020, an account has to be specified using the - - account (short - A) option, which is "deep" for the
project members. For people not included in the DEEP-EST project, please use the "Budget" name you received along with your account creation.

Once you get to the compute node, start your application using sr un. Note that the number of tasks used is the same as specified in the initial sr un
command above (4 nodes with two tasks each):

[kreutzl@eepv Tenp]$ srun -A deep -p dp-cn -N 4 -n 8 -t 00:30:00 --pty /bin/bash -i
[kreutzl@p-cn0l Tenp]$ srun ./ MPl_Hel |l oWorl d

Hello World fromrank 3 of 8 on dp-cn02
Hello World fromrank 7 of 8 on dp-cn04
Hello World fromrank 2 of 8 on dp-cn02
Hello World fromrank 6 of 8 on dp-cn04
Hello World fromrank 0 of 8 on dp-cn01
Hello World fromrank 4 of 8 on dp-cn03
Hello World fromrank 1 of 8 on dp-cn01l
Hello World fromrank 5 of 8 on dp-cn03

You can ignore potential warnings about the cpu binding. ParaStation will pin your processes.
Running directly from the front ends

You can run the application directly from the frontend, bypassing the shell:

[kreutzl@leepv Tenp]$ srun -A deep -p dp-cn -N 4 -n 8 -t 00:30:00 ./ Ml _Hell oWrld

Hello World fromrank 7 of 8 on dp-cn04
Hello World fromrank 3 of 8 on dp-cn02
Hello World fromrank 6 of 8 on dp-cn04
Hello World fromrank 2 of 8 on dp-cn02
Hello World fromrank 4 of 8 on dp-cn03
Hello World fromrank 0 of 8 on dp-cnO1l
Hello World fromrank 1 of 8 on dp-cn01l
Hello World fromrank 5 of 8 on dp-cn03

In this case, it can be useful to create an allocation which you can use for several runs of your job:

[kreutzl@leepv Tenp]$ salloc -A deep -p dp-cn -N 4 -n 8 -t 00:30: 00
salloc: Granted job allocation 69263
[kreutzl@eepv Tenp]$ srun ./ MPI_Hel l oWorld

Hello World fromrank 7 of 8 on dp-cn04
Hello World fromrank 3 of 8 on dp-cn02
Hello World fromrank 6 of 8 on dp-cn04
Hello World fromrank 2 of 8 on dp-cn02
Hello World fromrank 5 of 8 on dp-cn03
Hello World fromrank 1 of 8 on dp-cn01l
Hello World fromrank 4 of 8 on dp-cn03
Hello World fromrank 0 of 8 on dp-cn01

several nore runs

WikiPrint - from Polar Technologies

[kreut z1@eepv Tenp] $ exit
exit
salloc: Relinquishing job allocation 69263

Batch script

Given the following script hel | o_cl ust er. sh:

#!/ bi n/ bash

#SBATCH --partition=dp-cn

#SBATCH - A deep

#SBATCH - N 4

#SBATCH -n 8

#SBATCH -0 / p/ proj ect/cdeep/ kreutzl/ hello_cluster-9% . out
#SBATCH -e /p/ project/cdeep/ kreutzl/ hello_cluster-%.err
#SBATCH - - ti me=00: 10: 00

srun ./ MPI _Hel | oWorld

This script requests 4 nodes with 8 tasks, specifies the stdout and stderr files, and asks for 10 minutes of walltime. Submit:

[kreutzl@leepv Tenp]$ sbatch hello_cluster.sh
Subnmitted batch job 69264

Check what it's doing:

[kreutzl@leepv Tenp] $ squeue -u $USER
JOBI D PARTI TI ON NAMVE USER ST TIME NODES NODELI ST(REASON)
69264 dp-cn hello_cl kreutzl CG 0: 04 4 dp-cn[01- 04]

Check the result:

[kreutzl@eepv Tenp]$ cat /p/project/cdeep/ kreutzl/ hello_cluster-69264. out

Hello World fromrank 6 of 8 on dp-cn04
Hello World fromrank 3 of 8 on dp-cn02
Hello World fromrank 0 of 8 on dp-cn01
Hello World fromrank 4 of 8 on dp-cn03
Hello World fromrank 2 of 8 on dp-cn02
Hello World fromrank 7 of 8 on dp-cn04
Hello World fromrank 5 of 8 on dp-cn03
Hello World fromrank 1 of 8 on dp-cnO1l

Heterogeneous jobs

As of version 17.11 of Slurm, heterogeneous jobs are supported. For example, the user can run:

srun --account =deep --partition=dp-cn -N 1 -n 1 hostnane : --partition=dp-dam-N 1 -n 1 hostnane
dp-cn01
dp- danD1

Please notice the : separating the definitions for each sub-job of the heterogeneous job. Also, please be aware that it is possible to have more than two
sub-jobs in a heterogeneous job.

The user can also request several sets of nodes in a heterogeneous allocation using sal | oc. For example:

salloc --partition=dp-cn -N 2 : --partition=dp-dam-N 4

WikiPrint - from Polar Technologies

In order to submit a heterogeneous job via sbat ch, the user needs to set the batch script similar to the following one:

srun ./app_cn : ./app_dam

Here the packj ob keyword allows to define Slurm parameters for each sub-job of the heterogeneous job. Some Slurm options can be defined once at
the beginning of the script and are automatically propagated to all sub-jobs of the heterogeneous job, while some others (i.e. - - nodes or - - nt asks)
must be defined for each sub-job. You can find a list of the propagated options on the ?Slurm documentation.

When submitting a heterogeneous job with this colon notation using ParaStationMPI, a unique MPI _COVM WORLD is created, spanning across the two
partitions. If this is not desired, one can use the - - pack- gr oup key to submit independent job steps to the different node-groups of a heterogeneous
allocation:

srun --pack-group=0 ./app_cn ; srun --pack-group=1 ./app_dam

Using this configuration implies that inter-communication must be established manually by the applications during run time, if needed.
For more information about heterogeneous jobs please refer to the 2relevant page of the Slurm documentation.
Heterogeneous jobs with MPI communication across modules

In order to establish MPI communication across modules using different interconnect technologies, some special Gateway nodes must be used. On the
DEEP-EST system, MPI communication across gateways is needed only between Infiniband and Extoll interconnects.

Attention: Only ParaStation MPI supports MPI communication across gateway nodes.

This is an example job script for setting up an Intel MPI benchmark between a Cluster and a DAM node using a IB « Extoll gateway for MPI
communication:

#!/ bi n/ bash
Script to launch | MB PingPong between DAM CN using 1 Gat eway

Use the gateway allocation provided by SLURM
Use the packjob feature to | aunch separately CM and DAM execut abl e

Ceneral configuration of the job

https://slurm.schedmd.com/heterogeneous_jobs.html#submitting
https://slurm.schedmd.com/heterogeneous_jobs.html

WikiPrint - from Polar Technologies

#SBATCH - - j ob- nanme=nodul ar-i nb
#SBATCH - - account =deep

#SBATCH - - ti ne=00: 10: 00

#SBATCH - - out put =nodul ar - i nb- % . out
#SBATCH --error=nodul ar-inb-%.err

Configure the gateway daenon
#SBATCH - - gw_nun¥1l
#SBATCH - - gw_psgwd_per _node=1

Configure node and process count on the CM
#SBATCH --partition=dp-cn

#SBATCH - - nodes=1

#SBATCH - - nt asks- per - node=1

#SBATCH packj ob

Configure node and process count on the DAM
#SBATCH - -partition=dp- dam ext

#SBATCH - - nodes=1

#SBATCH - - nt asks- per - node=1

Echo job configuration

echo "DEBUG SLURM JOB_NODELI ST=$SLURM JOB_NODELI| ST"
echo "DEBUG SLURM NNODES=$SLURM NNODES"

echo "DEBUG SLURM TASKS_PER NODE=$SLURM TASKS_PER NODE"

Set the environment to use PS- M
nodul e --force purge

nodul e use $OTHERSTAGES

nodul e | oad St ages/ Devel - 2019a
nodul e [oad Intel

nodul e | oad ParaSt ati onMPI

Show the hosts we are running on
srun hostnane : hostnane

Execute
APP="/p/ proj ect/cfa_partec/pickartz/ npi-benchmarks/src_c/ | MB-MPI 1 Uni band"
srun ${APP} : ${APP}

Attention: During the first part of 2020, only the DAM nodes will have Extoll interconnect, while the CM and the ESB nodes will be connected via
Infiniband. This will change later during the course of the project (expected Summer 2020), when the ESB will be equipped with Extoll connectivity
(Infiniband will be removed from the ESB and left only for the CM).

A general description of how the user can request and use gateway nodes is provided at ?this section of the JURECA documentation.
Attention: some information provided on the JURECA documentation do not apply for the DEEP system. In particular:

« as of 31/03/2020, the DEEP system has 2 gateway nodes.

« As of 09/01/2020 the gateway nodes are exclusive to the job requesting them. Given the limited number of gateway nodes available on the system,
this may change in the future.

* The xenv utility (necessary on JURECA to load modules for different architectures - Haswell and KNL) is needed on DEEP only to load the ext ol |
module on the DAM and ESB nodes (the ext ol | module is not available on the CM. Trying to load it there will produce an error and cause the job to
fail). All the other modules can be loaded via the usual nodul e | oad or i command on the batch script before the sr un command. If desired,
xenv can still be used to load different set of modules for different sub-jobs of a heterogeneous jobs.

Information on past jobs and accounting

The sacct command can be used to enquire the Slurm database about a past job.

https://apps.fz-juelich.de/jsc/hps/jureca/modular-jobs.html#mpi-traffic-across-modules

WikiPrint - from Polar Technologies

[kreutzl@eepv Tenp]$ sacct -j 69268

Jobl D JobNane Partition Account Al | ocCPUS State ExitCode
69268+0 bash dp-cn deepest -a+ 96 COWPLETED 0:0
69268+0. 0 MPI _Hel | o+ deepest - a+ 2 COWPLETED 0:0
69268+1 bash dp- dam deepest - a+ 384 COWPLETED 0:0

On the Cluster (CM) nodes it's possible to query the consumed energy for a certain job:

[kreutzl@leepv kreutzl] $ sacct -o ConsunedEner gy, JobNare, Jobl D, CPUTi me, Al | ocNodes -j 69326

ConsunedEner gy JobNane Jobl D CPUTI ne Al | ocNodes
496. 70K hpl _MKL_O+ 69326 16: 28: 48
0 bat ch 69326. bat ch 16: 28: 48
496. 70K xIl i npack_+ 69326. 0 08: 10: 24 1

This feature will also be for the ESB nodes.

FAQ

Is there a cheat sheet for all main Slurm commands?
Yes, it is available ?here.

Why's my job not running?

You can check the state of your job with

scontrol show job <job id>

In the output, look for the Reason field.

You can check the existing reservations using

scontrol show res

How can | check which jobs are running in the machine?
Please use the squeue command (the "-u $USER" option to only list jobs belonging to your user id).
How do | do chain jobs with dependencies?

Please confer the sbat ch/sr un man page, especially the

-d, --dependency=<dependency_list>

entry.
Also, jobs can be chained after they have been submitted using the scont r ol command by updating their Dependency field.
How can check the status of partitions and nodes?

The main command to use is si nf 0. By default, when called alone, si nf o will list the available partitions and the number of nodes in each partition in a
given status. For example:

[deami ci sl@eepv hybridhello]$ sinfo
PARTI TI ON AVAIL TIMELIMT NODES STATE NODELI ST

sdv up 20: 00: 00 11 idl e deeper-sdv[06-16]
knl up 20: 00: 00 1 drain knl 01
knl up 20:00: 00 3 idle knl[04-06]

https://slurm.schedmd.com/pdfs/summary.pdf

WikiPrint - from Polar Technologies

knl 256 up 20: 00: 00 1 drain knl 01

knl 256 up 20: 00: 00 1 idle knl 05

knl 272 up 20: 00: 00 2 idle knl[04, 06]

snc4 up 20: 00: 00 1 idle knl 05

extol | up 20:00: 00 11 i dl e deeper-sdv[06-16]

m - gpu up 20:00: 00 3 idle nl-gpu[01-03]

dp-cn up 20: 00: 00 1 drain dp-cn33

dp-cn up 20: 00: 00 5 resv dp-cn[09-10, 25, 49- 50]

dp-cn up 20: 00: 00 44 idle dp-cn[01-08, 11- 24, 26- 32, 34- 48]
dp- dam up 20: 00: 00 1 drai n* dp-danD8

dp- dam up 20: 00: 00 2 drain dp-danf03, 07]

dp- dam up 20: 00: 00 3 resv dp-danf 05, 09- 10]

dp- dam up 20:00: 00 2 alloc dp-danf01, 04]

dp- dam up 20:00: 00 8 idl e dp-danf02, 06, 11- 16]

dp- dam ext up 20: 00: 00 2 resv dp-danf 09-10]

dp- dam ext up 20: 00: 00 6 idl e dp-danf11-16]

dp- esb up 20: 00: 00 51 drain* dp-esb[11, 26-75]

dp- esb up 20: 00: 00 2 drain dp-esb[08, 23]

dp- esb up 20: 00: 00 2 alloc dp-esb[09-10]

dp- esb up 20:00:00 20 idle dp-esb[01-07, 12-22, 24- 25]
dp-sdv-esb up 20:00: 00 2 resv dp-sdv-esb[01-02]

psgw-cl uster up 20:00: 00 1 idle nfgwol

psgw boost er up 20: 00: 00 1 idl e nfgwd2

debug up 20: 00: 00 1 drain* dp-danD8

debug up 20: 00: 00 4 drain dp-cn33,dp-danf 03, 07], knl 01
debug up 20: 00: 00 10 resv dp-cn[09-10, 25, 49-50], dp- danf 05, 09- 10] , dp- sdv- esb[01- 02]
debug up 20: 00: 00 2 alloc dp-danf01, 04]

debug up 20:00: 00 69 idle deeper-sdv[06-16],dp-cn[01-08, 11- 24, 26- 32, 34- 48] , dp- danf 02, 06, 11- 16] , knl [04- 06

Please refer to the man page for si nf o for more information.
Can | join stderr and stdout like it was done with - j oe in Torque?

Not directly. In your batch script, redirect stdout and stderr to the same file:

(The % will place the job id in the output file). N.B. It might be more efficient to redirect the output of your script's commands to a dedicated file.
What is the default binding/pinning behaviour on DEEP?
DEEP uses a ParTec-modified version of Slurm called psslurm. In psslurm, the options concerning binding and pinning are different from the ones

provided in Vanilla Slurm. By default, psslurm will use a by rank pinning strategy, assigning each Slurm task to a different physical thread on the node
starting from OS processor 0. For example:

[deani ci sl@leepv hybridhell o] $ OVP_NUM THREADS=1 srun -N 1 -n 4 -p dp-cn ./HybridHello | sort -k9n -kliln
Hell o from node dp-cn50, core 0; AKA rank O, thread O
Hell o from node dp-cn50, core AKA rank 1, thread 0O
Hell o from node dp-cn50, core AKA rank 2, thread 0
Hell o from node dp-cn50, core AKA rank 3, thread 0

W N PO

Attention: please be aware that the psslurm affinity settings only affect the tasks spawned by Slurm. When using threaded applications, the thread
affinity will be inherited from the task affinity of the process originally spawned by Slurm. For example, for a hybrid MPI-OpenMP application:

[deami ci sl@eepv hybridhell o]$ OW_NUM THREADS=4 srun -N 1 -n 4 -c 4 -p dp-dam ./HybridHello | sort -k9n -klln
Hell o from node dp-danDl1l, core 0-3; AKA rank 0, thread O
Hel l o from node dp-danD1, core 0-3; AKA rank O, thread 1

WikiPrint - from Polar Technologies

Hell o from node dp-danDl1l, core 0-3; AKA rank 0, thread 2
Hell o from node dp-danDl1l, core 0-3; AKA rank 0, thread 3
Hell o from node dp-danDl1l, core 4-7; AKA rank 1, thread O
Hell o from node dp-danDl1l, core 4-7; AKArank 1, thread 1
Hell o from node dp-danD1, core 4-7; AKA rank 1, thread 2
Hell o from node dp-danD1, core 4-7; AKA rank 1, thread 3

Hell o from node dp-danDl1l, core 8-11; AKA rank 2, thread O
Hell o from node dp-danDl, core 8-11; AKA rank 2, thread 1
Hell o from node dp-danDl, core 8-11; AKA rank 2, thread 2
Hell o from node dp-danDl1l, core 8-11; AKA rank 2, thread 3
Hell o from node dp-danD1, core 12-15; AKA rank 3, thread O
Hel l o from node dp-danD1, core 12-15; AKA rank 3, thread 1
Hell o from node dp-danDl, core 12-15; AKA rank 3, thread 2
Hel l o from node dp-danD1, core 12-15; AKA rank 3, thread 3

Be sure to explicitly set the thread affinity settings in your script (e.g. exporting environment variables) or directly in your code. Taking the previous

example:

[deani ci sl@leepv hybridhell o] $ OVWP_NUM THREADS=4 OVP_PROC BI ND=cl ose srun -N 1 -n 4 -¢c 4 -p dp-dam ./HybridHello | sort -k

Hell o from node dp-danDl, core 0; AKA rank O, thread O
Hell o from node dp-danDl1l, core 1; AKA rank O, thread 1
Hell o from node dp-danDl1l, core 2; AKA rank O, thread 2
Hell o from node dp-danDl, core 3; AKA rank O, thread 3
Hel l o from node dp-danD1, core 4; AKA rank 1, thread O
Hell o from node dp-danD1, core 5; AKA rank 1, thread 1
Hel l o from node dp-danD1, core 6; AKA rank 1, thread 2
Hel l o from node dp-danD1, core 7; AKA rank 1, thread 3
Hell o from node dp-danDl, core 8; AKA rank 2, thread O
Hell o from node dp-danDl1l, core 9; AKA rank 2, thread 1
Hell o from node dp-danDl1l, core 10; AKA rank 2, thread 2
Hell o from node dp-danDl1l, core 11; AKA rank 2, thread 3
Hel l o from node dp-danD1, core 12; AKA rank 3, thread 0
Hel l o from node dp-danDl, core 13; AKA rank 3, thread 1
Hel l o from node dp-danD1, core 14; AKA rank 3, thread 2
Hel l o from node dp-danDl, core 15; AKA rank 3, thread 3

Please refer to the 2following page on the JURECA documentation for more information about how to affect affinity on the DEEP system using psslurm
options. Please be aware that different partitions on DEEP have different number of sockets per node and cores/threads per socket with respect to
JURECA. Please refer to the System overview or run the | st opo- no- gr aphi cs on the compute nodes to get more information about the hardware

configuration on the different modules.

How do | use SMT on the DEEP CPUs?

On DEEP, SMT is enabled by default on all nodes. Please be aware that on all JSC systems (including DEEP), each hardware thread is exposed by the

OS as a separate CPU. For a n-core node, with m hardware threads per core, the OS cores from 0 to n-1 will correspond to the first hardware thread of

all hardware cores (from all sockets), the OS cores from n to 2n-1 to the second hardware thread of the hardware cores, and so on.

For instance, on a Cluster node (with two sockets with 12 cores each, with 2 hardware threads per core):

[deani ci sl@eepv hybridhello]$ srun -N 1 -n 1 -p dp-cn |stopo-no-graphics --no-caches --no-io --no-bridges --of
L L L L L L L L L L L e L L L L P L L e L L L L e L L e L L P L L L P L P L P L L L L P L L P L L o L L L L i S L L o X 1)

Machi ne (191GB total)

O O O O O O o o i o O O O o e o o o O O O A e o O O O O O o o O O A Al M A ool

? NUMANode P#0 (95GB) ??
2RV 222°

? Package P#0 ?
? ?

R I N N N S N IS BN BN |

? NUMANode P#1 (96GB)
DPPPPPPP2?22?22?????????2?2?2?27?2?27?27

? Package P#1
?

Asci i
22722222727

https://apps.fz-juelich.de/jsc/hps/jureca/affinity.html
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/System_overview

WikiPrint - from Polar Technologies

B I N B I I O I I B B B e B S R B R I B S I N I I e R R N

R I S B I S B B B e B I S B S B S B e I R B R B B R S "SI IS
S T B B B I I S T e B B B B N R R I R I B e R I S S IR IS BEES B RN |

Rararariririviviviririvieirdel

? ?
? ?
? 29222227277 ?
2 2 PUPHO ? 2
araraririraraririratel ?
? ?
? ?
? ?

? PU P#24 ?
2722222227277

? PU P#4 72

? PU P#28 ?
2?7?7?2?2°27?7?2?27?7?

S I S N N
)
)
)
N}
N}
)
)
N}
N}
)
)

Core P#18

P27??7?7?7?7?7?7?7

? ?
? ?
? ?
?? PUP#HE ? ?
? ?2???77227°°° ?
? 2
? ?
? ?

? PU P#32 ?
222222227277

PRt araririviviviviriviririsl

? ?
? d
? ?2??772772°727°7 ?
??2PUPHL 2?7
? 2??7???27?7°7?77 ?
2 ?
? ?
? ?

? PU P#25 ?
2222227272277

? PU P#29 ?
2??7?2?27?7?7?2?27?7?

Core P#19

Wararaririririririrdel

? ?
? ?
? 2277727?2727272727 ?
?? PUP#HO ? ?
? 277777777277 2
? ?
? ?
? ?

? PU P#33 ?
222222272277

R27??7?7???7?7?7?77?7

? ?
? ?
? 22927222777 ?
22 PUPH2 2 2
? ?2?2?7272°27°7°7 ?
? ?
? ?
? ?

? PU P#26 ?
2222227272777

Core P#10

ardrivivivivivirivdel

? ?
? ?
? ?
2?2 PUPHE 2 ?
2 29927227727 ?
? ?
? ?
? ?

? PU P#30 ?
2727227277777

Core P#25

Rardrariririviriririel

? ?
? ?
? ?
? ? PUP#10 ? ?
? 200°7°2°777? 2
2 ?
? ?
? ?

? PU P#34 2
222222272777

At arariririviriririririrdel

? ?
d ?
? 2022277277727 ?
?? PUP#3 2?2 ?
? 2?2?7°?7°7?77 ?
? 2
? ?
? ?

? PU P#27 ?
2222727227777

? PU P#31 ?
lriviriviiririirir]

Core P#26

R2?7??7?7?7?7?7?7

? ?
? ?
? 2777277277277 ?
? ? PUP#11 ? ?
? 2777777722722 72
? ?
? ?
? ?

? PU P#35 ?
222222727777

S B S A i e S B B I O I e e S S e S B B R R S e VS IRV
S T B B I B B B B B I e B N B R R B B I S S S RS IS RS RS BN |

R I S B I S B R B e B I S B S B S e B e I R B R B B R S "SI IS

RS I N B B N VS RIS IS B BRCS BEES BRSNS BEES B RN BRI IS BN RS S IS IS ERUS BEES BEES BEES BN N

Raraririririviviviririvieirdel

? ?
? ?
? 29222227277 ?
?2 2 PUP#I2 ? 2
2 Q2?27?2777 ?
? ?
? ?
? ?

? PU P#36 ?
2722222227277

? ?
? ?
? ?
2 2 PUP#16 ? 2
2 22222227227 2
? ?
? ?
? ?

? PU P#40 ?
2?7?7?2?2°27?7?2?27?7?

Core P#17

P27?7??7?7?7?7?7?7

? ?
? ?
? ?
? ? PU P#20 ? ?
? ?2???772727°°° ?
? 2
? ?
? ?

? PU P#44 ?
22?2?2?2?27?27?727?27?

Rartariririvivivivirivioiriel

? ?
? ?
? 29222222277 ?
2 2 PUP#L3 ? 2
P QP??????2?27?27? ?
? ?
? ?
? ?

? PU P#37 ?
2722222272777

? ?
? ?
? ?
2 2 PUP#LT ? 2
? 29272227227 2
? ?
? ?
? ?

? PU P#41 ?
2?7?7?2?2?7?27?2?27?7?

Core P#18

Wararaririririririrdel

? ?
? ?
? ?
? ? PUP#21 ? ?
? 277777777277 2
? ?
? ?
? ?

? PU P#45 ?
ededelololololololriel

? Host: dp-cn50

?

? I ndexes: physica
?

? Date

Thu 21 Nov 2019 15:22:31 CET

Q2?0?2022 ?07?27??27?2??27?2???7?2?7??7????7?2?2?27?7?27?27?7?27?2727?27?227?27?2?2?27?2?27?727

The PU P#X are the Processing Units numbers exposed by the OS.

To exploit SMT, simply run a job using a number of tasks*threads_per_task higher than the number of physical cores available on a node. Please refer to

the ?relevant page of the JURECA documentation for more information on how to use SMT on the DEEP nodes.

Attention: currently the only way to assign Slurm tasks to hardware threads belonging to the same hardware core is to use the - - cpu- bi nd option of

psslurm using mask_cpu to provide affinity masks for each task. For example:

[deami ci sl@eepv hybridhell o] $ OVP_NUM THREADS=2 OWVP_PROC Bl ND=cl ose OVP_PLACES=t hr eads srun

Hell o from node dp-danDl, core O; AKA rank 0, thread O
Hel l o from node dp-danDl, core 48; AKA rank O, thread 1
Hell o from node dp-danDl1l, core 1; AKA rank 1, thread O
Hell o from node dp-danDl, core 49; AKA rank 1, thread 1

-N1-n 2 -p dp-dam--cpu-bin

This can be cumbersome for jobs using a large number of tasks per node. In such cases, a tool like ?hwloc (currently available on the compute nodes,
but not on the login node!) can be used to calculate the affinity masks to be passed to psslurm.

10

https://apps.fz-juelich.de/jsc/hps/jureca/smt.html
https://www.open-mpi.org/projects/hwloc/

	Information about the batch system (SLURM)
	Overview
	Available Partitions
	Remark about environment
	An introductory example
	From a shell on a node
	Running directly from the front ends
	Batch script

	Heterogeneous jobs
	Heterogeneous jobs with MPI communication across modules

	Information on past jobs and accounting
	FAQ
	Is there a cheat sheet for all main Slurm commands?
	Why's my job not running?
	How can I check which jobs are running in the machine?
	How do I do chain jobs with dependencies?
	How can check the status of partitions and nodes?
	Can I join stderr and stdout like it was done with -joe in Torque?
	What is the default binding/pinning behaviour on DEEP?
	How do I use SMT on the DEEP CPUs?

