WikiPrint - from Polar Technologies

Table of Contents

Information about the batch system (SLURM)
Overview
Remark about environment
An introductory example
From a shell on a node
Running directly from the front ends
Batch script
Heterogeneous jobs
Heterogeneous jobs with MPI communication across modules
Available Partitions
Information on past jobs and accounting
FAQ
Is there a cheat sheet for all main Slurm commands?
Why's my job not running?
How can | check which jobs are running in the machine?
How do | do chain jobs with dependencies?
How can check the status of partitions and nodes?
Can | join stderr and stdout like it was done with -joe in Torque?
What is the default binding/pinning behaviour on DEEP?
How do | use SMT on the DEEP CPUs?

N o oo oo 01O oo agaohs, W NDNDNDNDNDDNDDN

WikiPrint - from Polar Technologies

Information about the batch system (SLURM)

Please confer /etc/slurm/README.

The documentation of Slurm can be found 2here.
Overview

Slurm offers interactive and batch jobs (scripts submitted into the system). The relevant commands are sr un and sbat ch. The srun command can be
used to spawn processes (please do not use mpiexec), both from the frontend and from within a batch script. You can also get a shell on a node to
work locally there (e.g. to compile your application natively for a special platform.

Remark about environment

By default, Slurm passes the environment from your job submission session directly to the execution environment. Please be aware of this when running
jobs with sr un or when submitting scripts with sbat ch. This behavior can be controlled via the - - export option. Please refer to the 2Slurm
documentation to get more information about this.

In particular, when submitting job scripts, it is recommended to load the necessary modules within the script and submit the script from a clean
environment.

An introductory example
Suppose you have an mpi executable named hel | o_npi . There are three ways to start the binary.
From a shell on a node

First, start a shell on a node. You would like to run your mpi task on 4 machines with 2 tasks per machine:

ni essen@leepl :src/npi > srun --partition=sdv -N 4 -n 8 --pty /bin/bash -i
ni essen@leeper - sdv04: / di rect/ honec/ zdvex/ ni essen/ src/ npi >

The environment is transported to the remote shell, no . profil e, . bashrc, ... are sourced (especially not the modules default from
letc/profile.d/ modul es. sh).

Once you get to the compute node, start your application using sr un. Note that the number of tasks used is the same as specified in the initial sr un
command above (4 nodes with two tasks each):

ni essen@leeper - sdv04: / di rect/ honec/ zdvex/ ni essen/ src/ nmpi > srun ./hello_cluster
srun: cluster configuration |acks support for cpu binding
Hello world fromprocess 6 of 8 on deeper-sdv07

Hello world fromprocess 7 of 8 on deeper-sdv07
Hello world fromprocess 3 of 8 on deeper-sdv05
Hello world fromprocess 4 of 8 on deeper-sdv06
Hello world fromprocess 0 of 8 on deeper-sdv04
Hello world fromprocess 2 of 8 on deeper-sdv05
Hello world fromprocess 5 of 8 on deeper-sdv06
Hello world fromprocess 1 of 8 on deeper-sdv04

You can ignore the warning about the cpu binding. ParaStation will pin you processes.
Running directly from the front ends

You can run the application directly from the frontend, bypassing the shell:

ni essen@leepl : src/npi > srun --partition=sdv -N 4 -n 8 ./hello_cluster
Hello world fromprocess 4 of 8 on deeper-sdv06
Hello world fromprocess 6 of 8 on deeper-sdv07
Hello world fromprocess 3 of 8 on deeper-sdv05
Hello world fromprocess 0 of 8 on deeper-sdv04

https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/

WikiPrint - from Polar Technologies

Hello world fromprocess 2 of 8 on deeper-sdv05
Hello world fromprocess 5 of 8 on deeper-sdv06
Hello world fromprocess 7 of 8 on deeper-sdv07
Hello world fromprocess 1 of 8 on deeper-sdv04

In this case, it can be useful to create an allocation which you can use for several runs of your job:

ni essen@leepl : src/ npi
Granted job allocation 955

sal | oc:

ni essen@leepl : ~/ src/ npi >srun

> salloc --partition=sdv -N4 -n 8

./hello_cluster

Hello world fromprocess 3 of 8 on deeper-sdv05
Hello world fromprocess 1 of 8 on deeper-sdv04
Hello world fromprocess 7 of 8 on deeper-sdv07
Hello world fromprocess 5 of 8 on deeper-sdv06
Hello world fromprocess 2 of 8 on deeper-sdv05
Hello world fromprocess 0 of 8 on deeper-sdv04
Hello world fromprocess 6 of 8 on deeper-sdv07
Hello world fromprocess 4 of 8 on deeper-sdv06
ni essen@leepl : ~/src/ nmpi > # several nore runs

ni essen@leepl : ~/ src/ npi >exi t

exit
sal | oc:

Rel i nqui shing job allocation 955

Batch script

Given the following script hel | o_cl ust er. sh: (it has to be executable):

#!/ bi n/ bash

#SBATCH - -partition=sdv

#SBATCH - N 4
#SBATCH -n 8
#SBATCH -0 / homec/ zdvex/ ni essen/ src/ npi/hello_cluster-%.1og
#SBATCH - e / homec/ zdvex/ ni essen/ src/ npi/hello_cluster-%.err

#SBATCH --ti

me=00: 10: 00

srun ./hello_cluster

This script requests 4 nodes with 8 tasks, specifies the stdout and stderr files, and asks for 10 minutes of walltime. Submit:

ni essen@leepl : src/ npi

Subni tted batch job 956

> sbatch ./hello_cluster.sh

Check what it's doing:

ni essen@leepl : src/ npi

> squeue

JOBI D PARTI TI ON

956

NAMVE
sdv hell o_cl

USER ST

niessen R 0: 00

TI ME NODES NODELI ST(REASON)
4 deeper - sdv[04-07]

Check the result:

ni essen@leepl : src/ npi

> cat hello_cluster-956.10g

Hello world fromprocess 5 of 8 on deeper-sdv06
Hello world fromprocess 1 of 8 on deeper-sdv04
Hello world from process 7 of 8 on deeper-sdv07
Hello world fromprocess 3 of 8 on deeper-sdv05
Hello world fromprocess 0 of 8 on deeper-sdv04
Hello world fromprocess 2 of 8 on deeper-sdv05

WikiPrint - from Polar Technologies

Hello world fromprocess 4 of 8 on deeper-sdv06
Hello world fromprocess 6 of 8 on deeper-sdv07

Heterogeneous jobs

As of version 17.11 of Slurm, heterogeneous jobs are supported. For example, the user can run:

srun --partition=dp-cn -N 1 -n 1 hostname : --partition=dp-dam-N 1 -n 1 hostnane
dp-cn01
dp- dan0D1

Please notice the : separating the definitions for each sub-job of the heterogeneous job. Also, please be aware that it is possible to have more than two
sub-jobs in a heterogeneous job.

The user can also request several sets of nodes in a heterogeneous allocation using sal | oc. For example:

salloc --partiton=dp-cn -N 2 : --partition=dp-dam-N 4

In order to submit a heterogeneous job via shbat ch, the user needs to set the batch script similar to the following one:

srun ./app_cn : ./app_dam

Here the packj ob keyword allows to define Slurm parameter for each sub-job of the heterogeneous job. Some Slurm options can be defined once at
the beginning of the script and are automatically propagated to all sub-jobs of the heterogeneous job, while some others (i.e. - - nodes or - - nt asks)
must be defined for each sub-job. You can find a list of the propagated options on the ?Slurm documentation.

When submitting a heterogeneous job with this colon notation using ParaStationMPI, a unique MPI _COVM WORLD is created, spanning across the two
partitions. If this is not desired, one can use the - - pack- gr oup key to submit independent job steps to the different node-groups of a heterogeneous
allocation:

srun --pack-group=0 ./app_cn ; srun --pack-group=1 ./app_dam

Using this configuration implies that inter-communication must be established manually by the applications during run time, if needed.

For more information about heterogeneous jobs please refer to the 2relevant page of the Slurm documentation.

https://slurm.schedmd.com/heterogeneous_jobs.html#submitting
https://slurm.schedmd.com/heterogeneous_jobs.html

WikiPrint - from Polar Technologies

Heterogeneous jobs with MPI communication across modules

In order to establish MPI communication across modules using different interconnect technologies, some special Gateway nodes must be used. A
general description of how the user can request and use gateway nodes is provided at ?this section of the JURECA documentation.

Attention: some information provided on the JURECA documentation do not apply for the DEEP system. In patrticular:

» as of 09/01/2020, the DEEP system has 1 gateway node. In the next weeks at least one additional gateway node will be installed.

* As of 09/01/2020 the gateway nodes are exclusive to the job requesting them. Given the limited number of gateway nodes available on the system,
this may change in the future.

e The xenv utility (necessary on JURECA to load modules for different architectures - Haswell and KNL) is needed on DEEP only to load the ext ol |
module on the DAM and ESB nodes (the ext ol | module is not available on the CM. Trying to load it there will produce an error and cause the job to
fail). All the other modules can be loaded via the usual nodul e | oad or M command on the batch script before the sr un command. If desired,
xenv can still be used to load different set of modules for different sub-jobs of a heterogeneous jobs.

Available Partitions

Please note that there is no default partition configured. In order to run a job, you have to specify one of the following partitions, using the
--partition=... switch:

e dp-cn: The DEEP-EST cluster nodes

* dp-dam: The DEEP-EST DAM nodes

» sdv: The DEEP-ER sdv nodes

* knl: The DEEP-ER knl nodes (all of them, regardless of cpu and configuration)

» knl256: the 256-core knls

* knl272: the 272-core knls

* snc4: the knls configured in SNC-4 mode

* ml-gpu: the machine learning nodes equipped with 4 Nvidia Tesla V100 GPUs each

» extoll: the sdv nodes in the extoll fabric (KNL nodes not on Extoll connectivity anymore!)

* dam: prototype dam nodes, two of which equipped with Intel Arria 10G FPGAs.

Anytime, you can list the state of the partitions with the si nf o command. The properties of a partition can be seen using

scontrol show partition <partition>

Information on past jobs and accounting

The sacct command can be used to enquire the Slurm database about a past job.
FAQ

Is there a cheat sheet for all main Slurm commands?

Yes, it is available ?here.

Why's my job not running?

You can check the state of your job with

scontrol show job <job id>

In the output, look for the Reason field.

You can check the existing reservations using

scontrol show res

How can | check which jobs are running in the machine?

https://apps.fz-juelich.de/jsc/hps/jureca/modular-jobs.html#mpi-traffic-across-modules
https://slurm.schedmd.com/pdfs/summary.pdf

Please use the squeue command.

How do | do chain jobs with dependencies?

Please confer the sbat ch/sr un man page, especially the

WikiPrint - from Polar Technologies

-d, --dependency=<dependency_list>

entry.

Also, jobs chan be chained after they have been submitted using the scont r ol command by updating their Dependency field.

How can check the status of partitions and nodes?

The main command to use is si nf 0. By default, when called alone, si nf o will list the available partitions and the number of nodes in each partition in a

given status. For example:

[deami ci sl@eepv hybridhello]$ sinfo

PARTI TI ON
sdv

knl

knl

knl 256

knl 256

knl 272
snc4

dam

dam

ext ol

m - gpu
dp-cn
dp-cn
dp-cn

dp- dam

dp- dam

dp- dam

dp- sdv-esb
psgw- cl ust er
psgw boost er
debug
debug
debug
debug
debug
debug

up
up
up
up
up
up
up
up
up
up
up
up
up
up
up
up
up
up
up
up
up
up
up
up
up
up

00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:
00:

00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00
00

AVAIL TIMELIMT NODES
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:
20:

16

W R P NR P ®e

N
R RO

a7

=

14

W R R R RPN

14
2
69

STATE
idle
drain
idle
drain
idle
idle
idle
down*
idle
idle
idle
drain
al |l oc
idle
dr ai n*
drain
down
idle
down*
down*
dr ai n*
down*
drain
down
al |l oc
idle

NODELI ST

deeper - sdv[01- 16]
knl 01

knl [04- 06]

knl 01

knl 05

knl [04, 06]

knl 05

pr ot odanD1

pr ot odan{ 02- 04]
deeper - sdv[01- 16]
m - gpuO1

dp-cn49

dp-cn[01, 50]

dp- cn[02- 48]

dp- danD1

dp- danD2

dp- danf 03- 16]

dp- sdv- esb[01- 02]
nf gwol

nf gw02

dp- dan0D1

pr ot odanD1

dp- cn49, dp- dan02, knl 01
dp- danf 03- 16]
dp-cn[01, 50]

deeper - sdv[01- 16], dp- cn[02- 48], knl [04- 06] , pr ot odani 02- 04]

Please refer to the man page for si nf o for more information.

Can | join stderr and stdout like it was done with - j oe in Torque?

Not directly. In your batch script, redirect stdout and stderr to the same file:

(The % will place the job id in the output file). N.B. It might be more efficient to redirect the output of your script's commands to a dedicated file.

What is the default binding/pinning behaviour on DEEP?

WikiPrint - from Polar Technologies

DEEP uses a ParTec-modified version of Slurm called psslurm. In psslurm, the options concerning binding and pinning are different from the ones
provided in Vanilla Slurm. By default, psslurm will use a by rank pinning strategy, assigning each Slurm task to a different physical thread on the node

starting from OS processor 0. For example:

[deami ci sl@eepv hybridhello]$ OW_NUM THREADS=1 srun -N 1 -n 4 -p dp-cn ./HybridHello |

sort -k9n -ki1iln

Hell o from node dp-cn50, core 0; AKA rank O, thread 0
Hell o from node dp-cn50, core 1; AKA rank 1, thread 0
Hell o from node dp-cn50, core 2; AKA rank 2, thread 0
Hel l o from node dp-cn50, core 3; AKA rank 3, thread O

Attention: please be aware that the psslurm affinity settings only affect the tasks spawned by Slurm. When using threaded applications, the thread
affinity will be inherited from the task affinity of the process originally spawned by Slurm. For example, for a hybrid MPI-OpenMP application:

[deani ci sl@leepv hybridhell o] $ OV _NUM THREADS=4 srun -N 1 -n 4 -c 4 -p dp-dam ./HybridHello | sort -k9n -kl1ln
Hel l o from node dp-danD1, core 0-3; AKA rank O, thread O
Hell o from node dp-danD1, core 0-3; AKA rank O, thread 1
Hell o from node dp-danDl, core 0-3; AKA rank O, thread 2
Hell o from node dp-danDl1l, core 0-3; AKA rank 0, thread 3
Hell o from node dp-danDl1l, core 4-7; AKA rank 1, thread O
Hell o from node dp-danDl1l, core 4-7; AKA rank 1, thread 1
Hell o from node dp-danDl, core 4-7; AKA rank 1, thread 2
Hell o from node dp-danDl1l, core 4-7; AKA rank 1, thread 3
Hell o from node dp-danD1, core 8-11; AKA rank 2, thread O
Hell o from node dp-danD1, core 8-11; AKA rank 2, thread 1
Hell o from node dp-danD1, core 8-11; AKA rank 2, thread 2
Hell o from node dp-danDl, core 8-11; AKA rank 2, thread 3
Hell o from node dp-danDl1l, core 12-15; AKA rank 3, thread 0
Hell o from node dp-danDl1l, core 12-15; AKA rank 3, thread 1
Hell o from node dp-danDl, core 12-15; AKA rank 3, thread 2
Hell o from node dp-danD1, core 12-15; AKA rank 3, thread 3

Be sure to explicitly set the thread affinity settings in your script (e.g.
example:

exporting environment variables) or directly in your code. Taking the previous

[deami ci sl@eepv hybridhel |l o] $

OVP_NUM THREADS=4 OWP_PROC BI ND=cl ose srun -N 1 -n 4 -c 4 -p dp-dam ./ HybridHello |

Hell o from node dp-danDl, core O; AKA rank 0, thread O
Hell o from node dp-danD1, core 1; AKA rank O, thread 1
Hell o from node dp-danDl1l, core 2; AKA rank 0, thread 2
Hell o from node dp-danDl1l, core 3; AKA rank O, thread 3
Hell o from node dp-danDl1l, core 4; AKA rank 1, thread O
Hell o from node dp-danDl, core 5; AKA rank 1, thread 1
Hel l o from node dp-danD1, core 6; AKA rank 1, thread 2
Hel l o from node dp-danD1, core 7; AKA rank 1, thread 3
Hell o from node dp-danDl, core 8; AKA rank 2, thread 0
Hel l o from node dp-danDl, core 9; AKA rank 2, thread 1
Hell o from node dp-danDl1l, core 10; AKA rank 2, thread 2
Hell o from node dp-danDl, core 11; AKA rank 2, thread 3
Hell o from node dp-danDl, core 12; AKA rank 3, thread O
Hell o from node dp-danDl, core 13; AKA rank 3, thread 1
Hel l o from node dp-danDl, core 14; AKA rank 3, thread 2
Hel l o from node dp-danD1, core 15; AKA rank 3, thread 3

Please refer to the ?following page on the JURECA documentation for more information about how to affect affinity on the DEEP system using psslurm
options. Please be aware that different partitions on DEEP have different number of sockets per node and cores/threads per socket with respect to
JURECA. Please refer to the System overview or run the | st opo- no- gr aphi cs on the compute nodes to get more information about the hardware

configuration on the different modules.

How do | use SMT on the DEEP CPUs?

On DEEP, SMT is enabled by default on all nodes. Please be aware that on all JSC systems (including DEEP), each hardware thread is exposed by the
OS as a separate CPU. For a n-core node, with m hardware threads per core, the OS cores from 0 to n-1 will correspond to the first hardware thread of

https://apps.fz-juelich.de/jsc/hps/jureca/affinity.html
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/System_overview

WikiPrint - from Polar Technologies

all hardware cores (from all sockets), the OS cores from n to 2n-1 to the second hardware thread of the hardware cores, and so on.

For instance, on a Cluster node (with two sockets with 12 cores each, with 2 hardware threads per core):

[deami ci sl@eepv hybridhello]$ srun

-N1-n1-p dp-cn |Istopo-no-graphics --no-caches --no-io --no-bridges --of asci

QP20 ???????0???0??7?2???7?07????7??7?07??7?2???7???7??0??7?0???0??7?227?27?227?2?7?27?7?27?272??7?2???7?22?27?2??2?7?227?27?22?2?7?227?227?2727?227?227?27?2727?27?227?27?22?27?227?27?7

? Machine (191GB total)

?

?
?

ESIECS IR IS S S S BN EEES BEES BN RS BN RS SN IS BN BEES B IS BN I S S R IS IS EEES EEES EEEN IS BN S S S IEES B RECS BEES BEEN |
S I B B B S T e B B N B I S B e B B e B A B R B S B e LS B R B
S B N O S T e B B I B N B I B I SIS S B B R B e B I S SN RN BN |

Package P#0

Rirdrirdrivdrivivivirivloivdsl

? PU P#24 ?
P????2?2?27?77?27?

? ?
? ?
? 29222227777 ?
22 PUPHA 2?2
P Q72?7?7277 ?
? ?
? ?
? ?

? PU P#28 ?
2722222227277

? PU P#32 ?
2722722727727

? PU P#25 ?
22222222277

? ?
? ?
? 222222272727 ?
22 PUPHS 22
? P???77??7°77°?7°? ?
? ?
2 ?
2 ?

? PU P#29 ?
2222222727277

? PU P#33 ?
272227727777

? PU P#26 ?
22222222777

Core P#10

2?7?7??7?7?7??7?7?

? ?
? ?
2 22927222777 ?
?2 2 PUPHE 2 7
D PP??2???7??7?7? ?
? ?
? ?
? ?

? PU P#30 ?
222222227772

Core P#25

ardrivdvivivivdrivdel

? PU P#10 ?
222222227772

? PU P#34 ?
2727227227777

? PU P#27 ?
222222277727

Core P#16

2??7?7?2?27?7?7?7?7?

? ?
? ?
? 227227227277 ?
2 2 PUPHT 2 7?
? PP???2???7?77?°? ?
? ?
? 2
? 2

? PU P#31 ?
2222722277727

Core P#26

ardrivivivivivioivdrl

? PU P#11 ?
2222722277727

? PU P#35 ?
2997227277777

? ? NUMANode P#0 (95GB)
2 P22 222727

Rirrirdvivirivivivivivivivirivivivivivivivirivivivivivivivivivirivirivirivirivivivivivivivirivirivirivivivivivivivlrivirivirivirivioivirivlrirdrir]

?
?

S B N O S T e B B R B N R I B e S T R B N B e R S SN RN BN |

Package P#1

Rirdrirdrivdrivivivirivlrivdel

? ?
? ?
? ?
? 2 PUPH#L2 ? ?
? 2297279227272 2
? ?
? ?
? ?

? PU P#36 ?
2227222277227

? ?
? ?
? 292222277277 ?
2 2 PUP#16 ? 2
P Q2?27?7277 ?
? ?
? ?
? ?

? PU P#40 ?
2722222227277

? PU P#20 ?
2722222227277

? PU P#44 ?
27229722727727

? ?
? ?
? ?
2 ? PUPHLI3 ? 2
? 292722272727 ?
? ?
? ?
? ?

? PU P#37 ?
22222222277

? ?
? ?
? 29222272277 ?
? 2 PU P#17 ? ?
? P???77??7°77°?7°? ?
? ?
2 ?
2 ?

? PU P#41 ?
2222222727277

? PU P#21 ?
2222222727277

? PU P#45 ?
272227727777

? NUMANode P#1 (96GB)
2RPPPPPP222222222222222222222222222222722727

N
?
? I nde
?
2?2

Dat e

dp- cn50

xes: physica

Thu 21 Nov 2019 15:22:31 CET

ardviriviriviviviviviviiviviviviviyiviriviyiviiviviviiriyiviviviviviviriviviviviyiviviviyiviviviviviviviviviviviyiviiviviviviviviviviviyiviiviyiviviviviriviviviviviviviviviviviviyiviviviviviyiviviviviviiviyiviiriviriririoirloirdr ol 0

The PU P#X are the Processing Units numbers exposed by the OS.

WikiPrint - from Polar Technologies

To exploit SMT, simply run a job using a number of tasks*threads_per_task higher than the number of physical cores available on a node. Please refer to
the ?relevant page of the JURECA documentation for more information on how to use SMT on the DEEP nodes.

Attention: currently the only way of assign Slurm tasks to hardware threads belonging to the same hardware core is to use the - - cpu- bi nd option of
psslurm using mask_cpu to provide affinity masks for each task. For example:

[deani ci sl@leepv hybridhell 0] $ OVP_NUM THREADS=2 OVP_PROC Bl ND=cl ose OWP_PLACES=threads srun -N 1 -n 2 -p dp-dam --cpu-bin
Hel l o from node dp-danD1, core O; AKA rank O, thread O
Hel l o from node dp-danD1, core 48; AKA rank O, thread 1
Hell o from node dp-danD1, core 1; AKA rank 1, thread O
Hell o from node dp-danDl1l, core 49; AKA rank 1, thread 1

This can be cumbersome for jobs using a large number of tasks per node. In such cases, a tool like ?hwloc (currently available on the compute nodes,
but not on the login node!) can be used to calculate the affinity masks to be passed to psslurm.

https://apps.fz-juelich.de/jsc/hps/jureca/smt.html
https://www.open-mpi.org/projects/hwloc/

	Information about the batch system (SLURM)
	Overview
	Remark about environment
	An introductory example
	From a shell on a node
	Running directly from the front ends
	Batch script

	Heterogeneous jobs
	Heterogeneous jobs with MPI communication across modules

	Available Partitions
	Information on past jobs and accounting
	FAQ
	Is there a cheat sheet for all main Slurm commands?
	Why's my job not running?
	How can I check which jobs are running in the machine?
	How do I do chain jobs with dependencies?
	How can check the status of partitions and nodes?
	Can I join stderr and stdout like it was done with -joe in Torque?
	What is the default binding/pinning behaviour on DEEP?
	How do I use SMT on the DEEP CPUs?

