
WikiPrint - from Polar Technologies

1

Table of Contents

Information about the batch system (SLURM) 2

Overview 2

Remark about environment 2

An introductory example 2

From a shell on a node 2

Running directly from the front ends 2

Batch script 3

Available Partitions 4

FAQ 4

Why's my job not running? 4

How can I check which jobs are running in the machine? 4

How do I do chain jobs with dependencies? 4

How can get a list of broken nodes? 4

Can I join stderr and stdout like it was done with -joe in Torque? 4

What's the equivalent of qsub -l nodes=x:ppn=y:cluster+n_b:ppn=p_b:booster? 5

pbs/slurm dictionary 6

WikiPrint - from Polar Technologies

2

Information about the batch system (SLURM)

Please confer /etc/slurm/README.

The documentation of Slurm can be found ?here.

Overview

Slurm offers interactive and batch jobs (scripts submitted into the system). The relevant commands are srun and sbatch. The srun command can be

used to spawn processes (please do not use mpiexec), both from the frontend and from within a batch script. You can also get a shell on a node to

work locally there (e.g. to compile your application natively for a special platform.

Remark about environment

By default, Slurm passes the environment from your job submission session directly to the execution environment. Please be aware of this when running

jobs with srun or when submitting scripts with sbatch. This behavior can be controlled via the --export option. Please refer to the ?Slurm

documentation to get more information about this.

In particular, when submitting job scripts, it is recommended to load the necessary modules within the script and submit the script from a clean

environment.

An introductory example

Suppose you have an mpi executable named hello_mpi. There are three ways to start the binary.

From a shell on a node

First, start a shell on a node. You would like to run your mpi task on 4 machines with 2 tasks per machine:

niessen@deepl:src/mpi > srun --partition=sdv -N 4 -n 8 --pty /bin/bash -i

niessen@deeper-sdv04:/direct/homec/zdvex/niessen/src/mpi >

The environment is transported to the remote shell, no .profile, .bashrc, … are sourced (especially not the modules default from

/etc/profile.d/modules.sh).

Once you get to the compute node, start your application using srun. Note that the number of tasks used is the same as specified in the initial srun

command above (4 nodes with two tasks each):

niessen@deeper-sdv04:/direct/homec/zdvex/niessen/src/mpi > srun ./hello_cluster

srun: cluster configuration lacks support for cpu binding

Hello world from process 6 of 8 on deeper-sdv07

Hello world from process 7 of 8 on deeper-sdv07

Hello world from process 3 of 8 on deeper-sdv05

Hello world from process 4 of 8 on deeper-sdv06

Hello world from process 0 of 8 on deeper-sdv04

Hello world from process 2 of 8 on deeper-sdv05

Hello world from process 5 of 8 on deeper-sdv06

Hello world from process 1 of 8 on deeper-sdv04

You can ignore the warning about the cpu binding. ParaStation will pin you processes.

Running directly from the front ends

You can run the application directly from the frontend, bypassing the shell:

niessen@deepl:src/mpi > srun --partition=sdv -N 4 -n 8 ./hello_cluster

Hello world from process 4 of 8 on deeper-sdv06

Hello world from process 6 of 8 on deeper-sdv07

Hello world from process 3 of 8 on deeper-sdv05

Hello world from process 0 of 8 on deeper-sdv04

https://slurm.schedmd.com/
https://slurm.schedmd.com/
https://slurm.schedmd.com/

WikiPrint - from Polar Technologies

3

Hello world from process 2 of 8 on deeper-sdv05

Hello world from process 5 of 8 on deeper-sdv06

Hello world from process 7 of 8 on deeper-sdv07

Hello world from process 1 of 8 on deeper-sdv04

In this case, it can be useful to create an allocation which you can use for several runs of your job:

niessen@deepl:src/mpi > salloc --partition=sdv -N 4 -n 8

salloc: Granted job allocation 955

niessen@deepl:~/src/mpi>srun ./hello_cluster

Hello world from process 3 of 8 on deeper-sdv05

Hello world from process 1 of 8 on deeper-sdv04

Hello world from process 7 of 8 on deeper-sdv07

Hello world from process 5 of 8 on deeper-sdv06

Hello world from process 2 of 8 on deeper-sdv05

Hello world from process 0 of 8 on deeper-sdv04

Hello world from process 6 of 8 on deeper-sdv07

Hello world from process 4 of 8 on deeper-sdv06

niessen@deepl:~/src/mpi> # several more runs

...

niessen@deepl:~/src/mpi>exit

exit

salloc: Relinquishing job allocation 955

Batch script

Given the following script hello_cluster.sh: (it has to be executable):

#!/bin/bash

#SBATCH --partition=sdv

#SBATCH -N 4

#SBATCH -n 8

#SBATCH -o /homec/zdvex/niessen/src/mpi/hello_cluster-%j.log

#SBATCH -e /homec/zdvex/niessen/src/mpi/hello_cluster-%j.err

#SBATCH --time=00:10:00

srun ./hello_cluster

This script requests 4 nodes with 8 tasks, specifies the stdout and stderr files, and asks for 10 minutes of walltime. Submit:

niessen@deepl:src/mpi > sbatch ./hello_cluster.sh

Submitted batch job 956

Check what it's doing:

niessen@deepl:src/mpi > squeue

 JOBID PARTITION NAME USER ST TIME NODES NODELIST(REASON)

 956 sdv hello_cl niessen R 0:00 4 deeper-sdv[04-07]

Check the result:

niessen@deepl:src/mpi > cat hello_cluster-956.log

Hello world from process 5 of 8 on deeper-sdv06

Hello world from process 1 of 8 on deeper-sdv04

Hello world from process 7 of 8 on deeper-sdv07

Hello world from process 3 of 8 on deeper-sdv05

Hello world from process 0 of 8 on deeper-sdv04

Hello world from process 2 of 8 on deeper-sdv05

WikiPrint - from Polar Technologies

4

Hello world from process 4 of 8 on deeper-sdv06

Hello world from process 6 of 8 on deeper-sdv07

Available Partitions

Please note that there is no default partition configured. In order to run a job, you have to specify one of the following partitions, using the

--partition=... switch:

• dp-cn: The DEEP-EST cluster nodes

• dp-dam: The DEEP-EST DAM nodes

• sdv: The DEEP-ER sdv nodes

• knl: The DEEP-ER knl nodes (all of them, regardless of cpu and configuration)

• knl256: the 256-core knls

• knl272: the 272-core knls

• snc4: the knls configured in SNC-4 mode

• ml-gpu: the machine learning nodes equipped with 4 Nvidia Tesla V100 GPUs each

• extoll: the sdv nodes in the extoll fabric (KNL nodes not on Extoll connectivity anymore!)

• dam: prototype dam nodes, two of which equipped with Intel Arria 10G FPGAs.

Anytime, you can list the state of the partitions with the sinfo command. The properties of a partition can be seen using

scontrol show partition <partition>

FAQ

Why's my job not running?

You can check the state of your job with

scontrol show job <job id>

In the output, look for the Reason field.

You can check the existing reservations using

scontrol show res

How can I check which jobs are running in the machine?

Please use the squeue command.

How do I do chain jobs with dependencies?

Please confer the sbatch/srun man page, especially the

-d, --dependency=<dependency_list>

entry.

How can get a list of broken nodes?

The command to use is

sinfo -Rl -h -o "%n %12U %19H %6t %E" | sort -u

See also the translation table below.

Can I join stderr and stdout like it was done with -joe in Torque?

WikiPrint - from Polar Technologies

5

Not directly. In your batch script, redirect stdout and stderr to the same file:

...

#SBATCH -o /point/to/the/common/logfile-%j.log

#SBATCH -e /point/to/the/common/logfile-%j.log

...

(The %j will place the job id in the output file). N.B. It might be more efficient to redirect the output of your script's commands to a dedicated file.

What's the equivalent of qsub -l nodes=x:ppn=y:cluster+n_b:ppn=p_b:booster?

As of version 17.11 of Slurm, heterogeneous jobs are supported. For example, the user can run:

srun --partition=sdv -N 1 -n 1 hostname : --partition=knl -N 1 -n 1 hostname

deeper-sdv01

knl05

In order to submit a heterogeneous job, the user needs to set the batch script similarly to the following:

#!/bin/bash

#SBATCH --job-name=imb_execute_1

#SBATCH --account=deep

#SBATCH --mail-user=

#SBATCH --mail-type=ALL

#SBATCH --output=job.out

#SBATCH --error=job.err

#SBATCH --time=00:02:00

#SBATCH --partition=sdv

#SBATCH --constraint=

#SBATCH --nodes=1

#SBATCH --ntasks=12

#SBATCH --ntasks-per-node=12

#SBATCH --cpus-per-task=1

#SBATCH packjob

#SBATCH --partition=knl

#SBATCH --constraint=

#SBATCH --nodes=1

#SBATCH --ntasks=12

#SBATCH --ntasks-per-node=12

#SBATCH --cpus-per-task=1

srun ./app_sdv : ./app_knl

Here the packjob keyword allows to define Slurm parameter for each sub-job of the heterogeneous job.

If you need to load modules before launching the application, it's suggested to create wrapper scripts around the applications, and submit such scripts

with srun, like this:

...

srun ./script_sdv.sh : ./script_knl.sh

where a script should contain:

#!/bin/bash

module load ...

WikiPrint - from Polar Technologies

6

./app_sdv

This way it will also be possible to load different modules on the different partitions used in the heterogeneous job.

pbs/slurm dictionary

PBS command closest slurm equivalent

qsub sbatch

qsub -I salloc + srun —pty bash -i

qsub into an existing reservation … —reservation= <reservation> …

pbsnodes scontrol show node

pbsnodes (-ln) sinfo (-R) or sinfo -Rl -h -o "%n %12U %19H %6t %E" | sort -u

pbsnodes -c -N n <node> scontrol update NodeName?= <node> State=RESUME

pbsnodes -o <node>
scontrol update NodeName?= <node> State=DRAIN reason="some

comment here"

pbstop smap

qstat squeue

checkjob <job> scontrol show job <job>

checkjob -v <job> scontrol show -d job <job>

showres scontrol show res

setres

scontrol create reservation [ReservationName?= <reservation>]

user=partec Nodes=j3c![053-056] StartTime?=now duration=Unlimited

Flags=IGNORE_JOBS

setres -u <user> ALL

scontrol create reservation ReservationName?=\<some name>

user=\<user> Nodes=ALL startTime=now duration=unlimited

FLAGS=maint,ignore_jobs

releaseres scontrol delete ReservationName?= <reservation>

	Information about the batch system (SLURM)
	Overview
	Remark about environment
	An introductory example
	From a shell on a node
	Running directly from the front ends
	Batch script

	Available Partitions
	FAQ
	Why's my job not running?
	How can I check which jobs are running in the machine?
	How do I do chain jobs with dependencies?
	How can get a list of broken nodes?
	Can I join stderr and stdout like it was done with -joe in Torque?
	What's the equivalent of qsub -l nodes=x:ppn=y:cluster+n_b:ppn=p_b:booster?

	pbs/slurm dictionary

