Wikiprint Book

Title: MPI/NAM Integration

Subject: DEEP - Public/ParaStationMPI
Version: 36

Date: 15.05.2024 11:56:51

Table of Contents

MPI/NAM Integration
Documentation
API Prototype Implementation
Extensions to MPI
Code Example for a ?Hello World? workflow
Usage Example on the DEEP-EST SDV
Cleaning up of persistent memory regions

WikiPrint - from Polar Technologies

O A W W W Www

WikiPrint - from Polar Technologies

...a modularity-enabled MPI library.

MPI/NAM Integration

Documentation

» Proposal for accessing the NAM via MPI

* API Prototype Implementation
* Usage Example on the DEEP-EST SDV

API Prototype Implementation

For evaluating the proposed semantics and API extensions, we have already developed a shared-memory-based prototype implementation where the
persistent NAM is (more or less) ?emulated? by persistent shared-memory (with deep_mem_kind=deep_mem_persistent).

Advice to users

Please note that this prototype is not intended to actually emulate the NAM but shall rather offer a possibility for the later users and programmers to
evaluate the proposed semantics from the MPI application?s point of view. Therefore, the focus here is not put on the question of how remote memory is
managed at its location (currently by MPI processes running local to the memory later by the NAM manager or the NAM itself), but on the question of
how process-foreign memory regions can be exposed locally. That means that (at least currently) for accessing a persistent RMA window, it has to be
made sure that there is at least one MPI process running locally to each of the window?s memory regions.

Extensions to MPI
The API proposal strives to stick to the current MPI standard as close as possible and to avoid the addition of new API functions and other symbols.

However, in order to make the usage of the prototype a little bit more convenient for the user, we have added at least a small set of new symbols
(denoted with MPIX) that may be used by the applications.

extern int MPI X_WN_DI SP_UNITS;

#defi ne MPI X_W N_FLAVCR | NTERCOW (MPI_W N_FLAVOR CREATE + \
MPI _W N_FLAVOR ALLOCATE + \
MPI _W N_FLAVOR DYNAM C + \
MPI _W N_FLAVOR SHARED + 0)

#def i ne MPI X_W N_FLAVOR | NTERCOMM SHARED (MPI W N _FLAVOR CREATE + \
MPI W N_FLAVOR ALLOCATE + \
MPl _W N_FLAVOR DYNAM C + \

MPl _W N_FLAVOR_SHARED + 1)

Code Example for a ?Hello World? workflow

The following two C codes should demonstrate how it shall become possible to pass intermediate data between two subsequent steps of a workflow
(Step 1: hello / Step 2: world) via the persistent memory of the NAM (currently emulated by persistent shared-memory):

[** hello.c **/

/* Create persistent MPI RVA wi ndow. */
MPI _I nfo_create(& n_i nfo);
MPI _I nfo_set(wi n_info, "deep_memkind", "deep_mem persistent");
MPI _W n_al | ocat e(si zeof (char) * HELLO STR LEN, sizeof(char), win_info, MPI_COVM WORLD,
&ni n_base, &win);

/* Put some content into the local region of the wi ndow */
if(argc > 1) {

snprintf(w n_base, HELLO STR LEN, "Hello Wrld fromrank %! %", world_rank, argv[1]);
} else {

snprintf(w n_base, HELLO STR LEN, "Hello Wrld fromrank %", world_rank);

}
MPI _W n_fence(0, wn);

https://deeptrac.zam.kfa-juelich.de:8443/trac/attachment/wiki/Public/ParaStationMPI/DEEP-EST_Task_6.1_MPI-NAM-Proposal.pdf
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/ParaStationMPI#APIPrototypeImplementation
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/ParaStationMPI#UsageExampleontheDEEP-ESTSDV

WikiPrint - from Polar Technologies

/* Retrieve port nanme of wi ndow */

MPI _I nfo_free(&w n_i nfo);

MPI _W n_get _info(wi n, &wi n_info);

MPI _Info_get(wi n_info, "deep_w n_port_nanme", |NFO VALUE_LEN, info_value, &flag);

if(flag) {

strcpy(port_nane, info_value);

if(world_rank == root) printf("(%) The Wndow s port nane is: %\n", world_rank, port_nane);
} else {

if(world_rank == root) printf("(%) No port nane found!\n", world_rank);

[** world.c **/

/* Check for port nanme: (to be passed as a command |ine argunent) */
if(argc == 1) {
if(world_rank == root) printf("[%] No port nane found!\n", world_rank);
goto finalize;
} else {
strcpy(port_name, argv[1]);
if(world_rank == root) printf("[%] The Wndow s port nane is: %\n", world_rank, port_nane);

/* Try to connect to the persistent wi ndow */

MPI _I nfo_create(& n_info);

MPI _Info_set(wi n_info, "deep_w n_connect", "true");

MPI _Comm set _errhandl er (MPI _COVW WORLD, MPI _ERRORS_RETURN) ;

errcode = MPI_Conm connect (port_nane, w n_info, root, MPI_COWM WORLD, & nter_com);
printf("[%] Connection to persistent nmenory region established!\n", world_rank);

/* Retrieve the nunber of renpte regions: (= fornmer nunber of ranks) */
MPI _Comm renot e_si ze(i nter_conm &renote_size);
if(world_rank == root) printf("[%] Nunmber of renote regions: %\ n", world_rank, renote_size);

/* Create wi ndow object for accessing the renote regions: */

MPI _W n_creat e_dynani c(MPI _I NFO_NULL, inter_comm &win);

MPI _Wn_get _attr(win, MPI_WN CREATE FLAVOR, &create_flavor, &flag);
assert (*create_flavor == MPI X_ W N_FLAVOR | NTERCOW) ;

MPI _W n_fence(0, wn);

/* Check the accessibility and the content of the renote regions: */
for(i=0; i<renote_size; i++) {
char hello_string[HELLO STR _LEN];

MPl _Get (hel l o_string, HELLO STR LEN, MPI _CHAR, i, 0, HELLO STR LEN, MPI_CHAR, win);
MPI _W n_fence(0, wn);
printf("[%] Get from%: %\n", world_rank, i, hello_string);

Usage Example on the DEEP-EST SDV

On the DEEP-EST SDV, there is already a special version of ParaStation MPI installed that features all the introduced API extensions. It is accessible via
the module system:

> nodul e | oad parastation/5.2.1-1-nt-wp6

When allocating a session with N nodes, one can run an MPI session (let?s say with n processes distributed across the N nodes) where each of the
processes is contributing its local and persistent memory region to an MPI window:

WikiPrint - from Polar Technologies

> salloc --partition=sdv --nodes=4 --tine=01:00: 00
salloc: Granted job allocation 2514
> srun -n4 -N4 ./hello 'Have fun!'

(0)
(D
(2)
(3)
(0)
(0)
(D
(2)
(3)
(0)
(0)
(D
(2)
(3

Runni ng on deeper-sdvi13
Runni ng on deeper-sdvl4
Runni ng on deeper-sdvi15
Runni ng on deeper-sdvl6

The Wndow s port nane is: shm d: 347897856: 92010569

Calling finalize...
Calling finalize...
Calling finalize...
Calling finalize...
Calling finalize...
Finalize done!
Final i ze done!
Final i ze done!
Finali ze done!

Afterwards, on all the nodes involved (and later on the NAM) one persistent memory region has been created by each of the MPI processes. The ?port
name? for accessing the persistent window again is in this example:

shni d: 347897856: 92010569

By means of this port name (here to be passes as a command line argument), all the processes of a subsequent MPI session can access the persistent
window provided that there is again at least one MPI processes running locally to each of the persistent but distributed regions:

> srun -n4 -N4

[0]
[1]
[2]
[3]
[0]
[1]
[3]
[0]
[2]
(0]
(0]
[1]
[2]
[3]
[0]
[1
[2]
[3]
(0]
[1]
[2]
[3]
[0]
[1
[2]
[3]
(0]
[1]
[2]
[3]
[0]
[1
[2]

Runni ng on deeper-sdvl3
Runni ng on deeper-sdvi14
Runni ng on deeper-sdvi15
Runni ng on deeper-sdv16

The Wndow s port nane is: shmd: 347897856: 92010569

Connection to persistent menory regi
Connection to persistent menory regi
Connection to persistent menory regi
Connection to persistent menory regi
Nunber of renpte regions: 4

CGet fromO: Hello Wrld fromrank 0!
Get fromO: Hello Wrld fromrank 0!
Get fromO: Hello Wrld fromrank 0!
Get fromO: Hello Wirld fromrank 0!
Get from1: Hello Wirld fromrank 1!
Get from1l: Hello Wrld fromrank 1!
Get from1l: Hello Wrld fromrank 1!
CGet froml: Hello Wrld fromrank 1!
Cet from2: Hello Wrld fromrank 2!
Get from2: Hello Wrld fromrank 2!
Get from2: Hello Wrld fromrank 2!
Get from2: Hello Wrld fromrank 2!
Get from3: Hello Wrld fromrank 3!
Get from3: Hello Wrld fromrank 3!
Get from3: Hello Wrld fromrank 3!
Get from3: Hello Wrld fromrank 3!
Calling finalize...

Calling finalize...

Calling finalize...

Calling finalize...

Final i ze done!

Final i ze done!

Final i ze done!

./world shm d: 347897856: 92010569

on established!
on established!
on established!
on established!

Have fun!
Have fun!
Have fun!
Have fun!
Have fun!
Have fun!
Have fun!
Have fun!
Have fun!
Have fun!
Have fun!
Have fun!
Have fun!
Have fun!
Have fun!
Have fun!

WikiPrint - from Polar Technologies

[3] Finalize done!

Advice to users

Pleases note that if not all persistent memory regions are covered by the subsequent session, the ?connection establishment? to the remote RMA

window fails:

> srun -n4 -N2 ./world shmd: 347897856: 92010569

[3] Running on deeper-sdvl4
[1] Running on deeper-sdv13
[2] Running on deeper-sdvl4
[0] Running on deeper-sdv13

[0] The Wndow s port nane is:

?

shmi d: 347930624: 92010569
[0] ERROR Could not connect to persistent nmenory region!
application called Ml _Abort (MPl _COVM WORLD,

_1)

Cleaning up of persistent memory regions

If the connection to a persistent memory region succeeds, the window and all of its memory regions will eventually be removed by the MPI_Win_free call
of the subsequent MPI session (here by world.c) at least if not deep_mem_persistent is passes again as an Info argument. However, if a connection

attempt fails, the persistent memory regions still persist.

For explicitly cleaning up those artefacts, one can use a simple batch script:

#!/ bi n/ bash

keys="ipcs | grep 777 |

for key in $keys ; do
i pcrm -m $key

done

cut

-d'

-f2°

Advice to administrators

Obviously, a good idea would be the integration of e such an automated cleaning-up procedure as a default into the epilogue scripts for the jobs.

	MPI/NAM Integration
	Documentation
	API Prototype Implementation
	Extensions to MPI
	Code Example for a ?Hello World? workflow

	Usage Example on the DEEP-EST SDV
	Cleaning up of persistent memory regions

