
Wikiprint Book

Title: Public/ParaStationMPI

Subject: DEEP - Public/ParaStationMPI

Version: 36

Date: 16.05.2024 00:13:00

WikiPrint - from Polar Technologies

2

Table of Contents

Modular MPI Jobs 3

Inter-module MPI Communication 3

Application-dependent Tuning 3

API Extensions for MSA awareness 3

Reporting of Statistical Information 4

Filtering by Connection Type 6

A note on performance impacts 6

Modularity-aware Collectives 6

Feature Description 6

Feature usage on the DEEP-EST prototype 7

Feature usage in environments without MSA support 7

CUDA Support by ParaStation MPI 8

CUDA awareness for MPI 8

Usage on the DEEP-EST system 8

Testing for CUDA awareness 8

Using Network Attached Memory with ParaStation MPI 8

Documentation 8

WikiPrint - from Polar Technologies

3

…a modularity-enabled MPI library.

Modular MPI Jobs

Inter-module MPI Communication

ParaStation MPI provides support for inter-module communication in federated high-speed networks. Therefore, so-called Gateway (GW) daemons

bridge the MPI traffic between the modules. This mechanism is transparent to the MPI application, i.e., the MPI ranks see a common MPI_COMM_WORLD

across all modules within the job. However, the user has to account for these additional Gateway resources during the job submission. The following

srun command line with so-called colon notation illustrates the submission of heterogeneous pack jobs including the allocation of Gateway resources:

srun --gw_num=1 --partition dp-cn -N8 -n64 ./mpi_hello : --partition dp-esb -N16 -n256 ./mpi_hello

An MPI job started with this colon notation via srun will run in a single MPI_COMM_WORLD.

However, workflows across modules may demand for multiple MPI_COMM_WOLRD sessions that may connect (and later disconnect) with each other

during runtime. The following simple job script is example that supports such a case:

#!/bin/bash

#SBATCH --gw_num=1

#SBATCH --nodes=8 --partition=dp-cn

#SBATCH hetjob

#SBATCH --nodes=16 --partition=dp-esb

srun -n64 --het-group 0 ./mpi_hello_accept &

srun -n256 --het-group 1 ./mpi_hello_connect &

wait

Further examples of Slurm batch scripts illustrating the allocation of heterogeneous resources can be found here.

Application-dependent Tuning

The Gateway protocol supports the fragmentation of larger messages into smaller chunks of a given length, i.e., the Maximum Transfer Unit (MTU). This

way, the Gateway daemon may benefit from pipelining effect resulting in an overlapping of the message transfer from the source to the Gateway daemon

and from the Gateway daemon to the destination. The chunk size may be influenced by setting the following environment variable:

PSP_GW_MTU=<chunk size in byte>

The optimal chunk size is highly dependent on the communication pattern and therefore has to be chosen for each application individually.

API Extensions for MSA awareness

Besides transparent MSA support, there is the possibility for the application to adapt to modularity explicitly.

For doing so, on the one hand, ParaStation MPI provides a portable API addition for retrieving topology information by querying a Module ID via the

MPI_INFO_ENV object:

 int module_id;

 char value[MPI_MAX_INFO_VAL];

 MPI_Info_get(MPI_INFO_ENV, "msa_module_id", MPI_MAX_INFO_VAL, value, &flag);

 if (flag) { /* This MPI environment is modularity-aware! */

 my_module_id = atoi(value); /* Determine the module affinity of this process. */

 } else { /* This MPI environment is NOT modularity-aware! */

 my_module_id = 0; /* Assume a flat topology for all processes. */

 }

https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/Batch_system#HeterogeneousjobswithMPIcommunicationacrossmodules

WikiPrint - from Polar Technologies

4

On the other hand, there is the possibility to use a newly added split type for the standardized MPI_Comm_split_type() function for creating MPI

communicators according to the modular topology of an MSA system:

 MPI_Comm_split(MPI_COMM_WORLD, my_module_id, 0, &module_local_comm);

 /* After the split call, module_local_comm contains from the view of each

 * process all the other processes that belong to the same local MSA module.

 */

 MPI_Comm_rank(module_local_comm, &my_module_local_rank);

 printf("My module ID is %d and my module-local rank is %d\n", my_module_id, my_module_local_rank);

Reporting of Statistical Information

The recently installed ParaStation MPI version 5.4.7-1 offers the possibility to collect statistical information and to print a respective report on the

number of messages and the distribution over their length at the end of an MPI run. (The so-called psmpi histogram feature.) This new feature is

currently enabled on DEEP-EST for the psmpi installation in the Devel-2019a stage:

> module use $OTHERSTAGES

> module load Stages/Devel-2019a

> module load GCC/8.3.0

> module load ParaStationMPI/5.4.7-1

For activating this feature for an MPI run, the PSP_HISTOGRAM=1 environment variable has to be set:

> PSP_HISTOGRAM=1 srun --gw_num=1 -A deep --partition=dp-cn -N2 -n2 ./IMB-MPI1 Bcast -npmin 4 : --partition=dp-dam-ext -N2 -n2 ./IMB-MPI1 Bcast -npmin 4

srun: psgw: requesting 1 gateway nodes

srun: job 101384 queued and waiting for resources

srun: job 101384 has been allocated resources

#--

Intel(R) MPI Benchmarks 2019 Update 5, MPI-1 part

#--

...

#--

Benchmarking Bcast

#processes = 4

#--

 #bytes #repetitions t_min[usec] t_max[usec] t_avg[usec]

 0 1000 0.03 0.04 0.04

 1 1000 0.81 6.70 2.81

 2 1000 0.86 6.79 2.69

 4 1000 0.84 6.79 2.69

 8 1000 0.86 6.80 2.72

 16 1000 0.85 6.76 2.68

 32 1000 0.87 6.88 2.67

 64 1000 0.95 7.43 3.38

 128 1000 0.98 7.02 3.18

 256 1000 0.91 8.11 3.68

 512 1000 0.91 10.46 4.80

 1024 1000 1.01 11.13 5.59

 2048 1000 1.07 11.91 6.12

 4096 1000 1.35 12.77 6.78

 8192 1000 1.77 14.81 8.23

 16384 1000 3.24 18.66 11.19

 32768 1000 4.93 25.96 16.14

 65536 640 30.06 38.71 34.03

 131072 320 44.85 60.80 52.53

WikiPrint - from Polar Technologies

5

 262144 160 66.28 100.63 83.20

 524288 80 109.16 180.59 144.57

 1048576 40 199.61 343.00 271.12

 2097152 20 377.66 666.27 521.72

 4194304 10 736.83 1314.28 1025.35

All processes entering MPI_Finalize

 bin freq

 64 353913

 128 6303

 256 6303

 512 6303

 1024 6311

 2048 6303

 4096 6303

 8192 6303

 16384 6303

 32768 6303

 65536 4035

 131072 2019

 262144 1011

 524288 507

1048576 255

2097152 129

4194304 66

8388608 0

16777216 0

33554432 0

67108864 0

As one can see, the messages being exchanged between all processes of the run are sorted into bins according to their message lengths. The number

of bins as well as their limits can be adjusted by the following environment variables:

• PSP_HISTOGRAM_MIN (default: 64 bytes) Set the lower limit regarding the message size for controlling the number of bins of the histogram.

• PSP_HISTOGRAM_MAX (default: 64 MByte) Set the upper limit regarding the message size for controlling the number of bins of the histogram.

• PSP_HISTOGRAM_SHIFT (default: 1 bit position) Set the bit shift regarding the step width for controlling the number of bins of the histogram.

Example:

> PSP_HISTOGRAM=1 PSP_HISTOGRAM_SHIFT=2 PSP_HISTOGRAM_MAX=4096 srun --gw_num=1 -A deep --partition=dp-cn -N2 -n2 ./IMB-MPI1 Barrier -npmin 4 : --partition=dp-dam-ext -N2 -n2 ./IMB-MPI1 Barrier -npmin 4

...

#---

Benchmarking Barrier

#processes = 4

#---

#repetitions t_min[usec] t_max[usec] t_avg[usec]

 1000 5.02 5.02 5.02

All processes entering MPI_Finalize

bin freq

 64 16942

256 0

1024 8

4096 0

WikiPrint - from Polar Technologies

6

In this example, 16942 messages were smaller than or equal to 64 Byte of MPI payload, while 8 messages were greater than 256 Byte but smaller than

or equal to 1024 Byte.

Please note at this point that all messages larger than PSP_HISTOGRAM_MAX are as well counted and always fall into the last bin. Therefore, in this

example, no message of the whole run was larger than 1024 Byte, because the last bin, labeled with 4096 but collecting all messages larger than 1024,

is empty.

Filtering by Connection Type

An addition that could make this feature quite useful for statistical analysis in the DEEP-EST project is the fact that the message counters can be filtered

by connection types by setting the PSP_HISTOGRAM_CONTYPE variable. For example, in the following run, only messages that cross the Gateway are

recorded:

> PSP_HISTOGRAM_CONTYPE=gw PSP_HISTOGRAM=1 PSP_HISTOGRAM_SHIFT=2 PSP_HISTOGRAM_MAX=4096 srun --gw_num=1 -A deep --partition=dp-cn -N2 -n2 ./IMB-MPI1 Barrier -npmin 4 : --partition=dp-dam-ext -N2 -n2 ./IMB-MPI1 Barrier -npmin 4

...

#---

Benchmarking Barrier

#processes = 4

#---

#repetitions t_min[usec] t_max[usec] t_avg[usec]

 1000 4.96 4.96 4.96

All processes entering MPI_Finalize

bin freq (gw)

 64 12694

256 0

1024 4

4096 0

Connection types for PSP_HISTOGRAM_CONTYPEthat might be relevant for DEEP-EST are:

• gw for messages routed via a Gateway

• openib for InfiniBand communication via the pscom4openib plugin

• velo for Extoll communication via the pscom4velo plugin

• shm for node-local communication via shared-memory.

A note on performance impacts

The collection of statistical data generates a small overhead, which may be reflected in the message latencies in particular. It is therefore recommended

to set PSP_HISTOGRAM=0 for performance benchmarking — or even better to use another psmpi version and/or installation where this feature is already

disabled at compile time.

Modularity-aware Collectives

Feature Description

In the context of DEEP-EST and MSA, ParaStation MPI has been extended by modularity awareness also for collective MPI operations. In doing so, an

MSA-aware collective operation is conducted in a hierarchical manner where the intra- and inter- module phases are strictly separated:

i. First do all module-internal gathering and/or reduction operations if required.

ii. Then perform the inter-module operation with only one process per module being involved.

iii. Finally, distribute the data within each module in a strictly module-local manner.

This approach is here exemplarily shown in the following figure for a Broadcast operation with nine processes and three modules:

Besides Broadcast, the following collective operations are currently provided with this awareness:

• MPI_Bcast / MPI_Ibcast

WikiPrint - from Polar Technologies

7

• MPI_Reduce / MPI_Ireduce

• MPI_Allreduce / MPI_Iallreduce

• MPI_Scan / MPI_Iscan

• MPI_Barrier

Feature usage on the DEEP-EST prototype

For activating/controlling this feature, the following environment variables must/can be used:

- PSP_MSA_AWARENESS=1 # Generally activate the consideration of modular topologies (NOT enabled by default)

- PSP_MSA_AWARE_COLLOPS=0|1|2 # Select the feature level:

 0: Disable MSA awareness for collective MPI operations

 1: Enable MSA awareness for collective MPI operations (default if PSP_MSA_AWARENESS=1 is set)

 2: Apply MSA awareness recursively in multi-level topologies (set PSP_SMP_AWARENESS=1 in addition)

In the recursive application of MSA awareness (PSP_MSA_AWARE_COLLOPS=2), a distinction is first made between inter- and intra-module

communication and then, in a second step, likewise between inter- and intra-node communication within the modules if PSP_SMP_AWARENESS=1 is set

in addition. (Please note that a meaningful usage of PSP_MSA_AWARE_COLLOPS=2 requires psmpi-5.4.5 or higher.)

A larger benchmarking campaign concerning the benefits of the MSA-aware collectives on the DEEP-EST prototype is still to be conducted. However, by

using the histogram feature of ParaStation MPI, it could at least be proven that the number of messages crossing a Gateway can actually be reduced.

Feature usage in environments without MSA support

On the DEEP-EST prototype, the Module ID is determined automatically and the environment variable PSP_MSA_MODULE_ID is then set accordingly.

However, on systems without this support, and/or on systems with a ParaStation MPI before version 5.4.6, the user has to set and pass this variable

explicitly, for example, via a bash script:

> cat msa.sh

#!/bin/bash

ID=$2

APP=$1

shift

shift

ARGS=$@

PSP_MSA_MODULE_ID=${ID} ${APP} ${ARGS}

> srun ./msa.sh ./IMB-MPI1 Bcast : ./msa.sh ./IMB-MPI1 Bcast

For psmpi versions before 5.4.6, the Module IDs (PSP_MSA_MODULE_ID) were not set automatically! This means that the user had to set and pass this

variable explicitly, for example, via a bash script:

#!/bin/bash

Script (script0.sh) for Module 0: (e.g. Cluster)

APP="./IMB-MPI1 Bcast"

export PSP_MSA_AWARENESS=1

export PSP_MSA_MODULE_ID=0 # <- set an arbitrary ID for this module!

./${APP}

#!/bin/bash

Script (script1.sh) for Module 1: (e.g. ESB)

APP="./IMB-MPI1 Bcast"

export PSP_MSA_AWARENESS=1

export PSP_MSA_MODULE_ID=1 # <- set a different ID for this module!

./${APP}

> srun ./script0 : ./script1

In addition, this script approach can always be useful if one wants to set the Module IDs explicitly, e.g. for debugging and/or emulating reasons.

https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/ParaStationMPI#ReportingofStatisticalInformation

WikiPrint - from Polar Technologies

8

CUDA Support by ParaStation MPI

CUDA awareness for MPI

In brief, ?CUDA awareness in an MPI library means that a mixed CUDA + MPI application is allowed to pass pointers to CUDA buffers (these are

memory regions located on the GPU, the so-called Device memory) directly to MPI functions such as MPI_Send() or MPI_Recv(). A non

CUDA-aware MPI library would fail in such a case because the CUDA-memory cannot be accessed directly, e.g., via load/store or memcpy() but has to

be transferred in advance to the host memory via special routines such as cudaMemcpy(). As opposed to this, a CUDA-aware MPI library recognizes

that a pointer is associated with a buffer within the device memory and can then copy this buffer prior to the communication into a temporarily host buffer

— what is called staging of this buffer. Additionally, a CUDA-aware MPI library may also apply some kind of optimizations, e.g., by means of exploiting

so-called GPUDirect capabilities that allow for direct RDMA transfers from and to the device memory.

Usage on the DEEP-EST system

On the DEEP-EST system, the CUDA awareness can be enabled by loading a module that links to a dedicated ParaStation MPI library providing CUDA

support:

module load GCC

module load ParaStationMPI/5.4.2-1-CUDA

Please note that CUDA awareness might impact the MPI performance on systems parts where CUDA is not used. Therefore, it might be useful (and the

other way around necessary) to disable/enable the CUDA awareness. Furthermore, additional optimizations such as GPUDirect, i.e., direct RMA

transfers to/from CUDA device memory, are available with certain pscom plugins depending on the underlying hardware.

The following environment variables may be used to influence the CUDA awareness in ParaStation MPI

PSP_CUDA=0|1 # disable/enable CUDA awareness

PSP_UCP=1 # support GPUDirect via UCX in InfiniBand networks (e.g., this is currently true for the ESB nodes)

Testing for CUDA awareness

ParaStation MPI features three API extensions for querying whether the MPI library at hand is CUDA-aware or not.

The first targets the compile time:

#if defined(MPIX_CUDA_AWARE_SUPPORT) && MPIX_CUDA_AWARE_SUPPORT

printf("The MPI library is CUDA-aware\n");

#endif

…and the other two also the runtime:

if (MPIX_Query_cuda_support())

 printf("The CUDA awareness is activated\n");

or alternatively:

MPI_Info_get(MPI_INFO_ENV, "cuda_aware", ..., value, &flag);

/*

* If flag is set, then the library was built with CUDA support.

* If, in addition, value points to the string "true", then the

* CUDA awareness is also activated (i.e., PSP_CUDA=1 is set).

*/

Please note that the first two API extensions are similar to those that Open MPI also provides with respect to CUDA awareness, whereas the latter is

specific solely to ParaStation MPI, but which is still quite portable due to the use of the generic MPI_INFO_ENV object.

Using Network Attached Memory with ParaStation MPI

Documentation

https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/

WikiPrint - from Polar Technologies

9

• Proposal for accessing the NAM via MPI

• This Manual for using the NAM as a PDF

More to come…

https://deeptrac.zam.kfa-juelich.de:8443/trac/attachment/wiki/Public/ParaStationMPI/DEEP-EST_Task_6.1_MPI-NAM-Proposal.pdf
https://deeptrac.zam.kfa-juelich.de:8443/trac/attachment/wiki/Public/ParaStationMPI/DEEP-EST_Task_6.1_MPI-NAM-Manual.pdf

	Modular MPI Jobs
	Modular MPI Jobs
	Inter-module MPI Communication
	Application-dependent Tuning
	API Extensions for MSA awareness

	Reporting of Statistical Information
	Filtering by Connection Type
	A note on performance impacts

	Modularity-aware Collectives
	Feature Description
	Feature usage on the DEEP-EST prototype
	Feature usage in environments without MSA support

	CUDA Support by ParaStation MPI
	CUDA awareness for MPI
	Usage on the DEEP-EST system
	Testing for CUDA awareness

	Using Network Attached Memory with ParaStation MPI
	Documentation

