Table of Contents

Heterogeneous Jobs using inter-module MPI communication

Application-dependent Tuning
Reporting of Statistical Information
Modularity-aware Collectives
Feature Description
Feature Usage
Usage with older versions
CUDA Support by ParaStation MPI
What is CUDA awareness for MPI?
Some external Resources
Current status on the DEEP system
Usage on the DEEP system
NAM Integration for ParaStation MPI
Documentation
API Prototype Implementation
Extensions to MPI
Code Example for a ?Hello World? workflow
Usage Example on the DEEP-ER SDV
Cleaning up of persistent memory regions

WikiPrint - from Polar Technologies

© N O o000 00 o oo D™SMBDMBBNDNNODDN

WikiPrint - from Polar Technologies

...a modularity-enabled MPI library.

Heterogeneous Jobs using inter-module MPI communication

ParaStation MPI provides support for inter-module communication in federated high-speed networks. Therefore, so-called gateway (GW) daemons
bridge the MPI traffic between the modules. This mechanism is transparent to the MPI application, i.e., the MPI ranks see a common MPI _COVM WORLD
across all modules within the job. However, the user has to account for these additional GW resources during the job submission. An example SLURM
Batch script illustrating the submission of heterogeneous pack jobs including the allocation of GW resources can be found here.

Application-dependent Tuning
The GW protocol supports the fragmentation of larger messages into smaller chunks of a given length, i.e., the Maximum Transfer Unit (MTU). This way,

the GW daemon may benefit from pipelining effect resulting in an overlapping of the message transfer from the source to the GW daemon and from the
GW daemon to the destination. The chunk size may be influenced by setting the following environment variable:

PSP_GW MrU=<chunk size in byte>

The optimal chunk size is highly dependent on the communication pattern and therefore has to be chosen for each application individually.
Reporting of Statistical Information
The recently installed ParaStation MPI version 5.4.7-1 offers the possibility to collect statistical information and to print a respective report on the number

of messages and the distribution over their length at the end of an MPI run. This new feature is currently enabled on DEEP-EST for the psmpi installation
in the Devel - 2019a stage:

nodul e use $OTHERSTAGES

nodul e | oad St ages/ Devel - 2019a
nmodul e | oad GCC/8.3.0

nodul e | oad ParaStationMPl/5.4.7-1

V V V V

For activating this feature for an MPI run, the PSP_HI STOGRAM=1 environment variable has to be set:

> PSP_HI STOGRAMEL srun --gw_nun¥l -A deep --partition=dp-cn -N2 -n2 ./IMB-MPI1 Bcast -npmin 4 : --partition=dp-dam ext
srun: psgw. requesting 1 gateway nodes
srun: job 101384 queued and waiting for resources

srun: job 101384 has been allocated resources

Intel (R MPI Benchmarks 2019 Update 5, MPI-1 part

Benchmar ki ng Bcast
#processes = 4

o
#bytes #repetitions t_mn[usec] t_max[usec] t_avg[usec]
0 1000 0.03 0.04 0.04

1 1000 0.81 6.70 2.81

2 1000 0. 86 6.79 2.69

4 1000 0.84 6.79 2.69

8 1000 0. 86 6. 80 2.72

16 1000 0.85 6.76 2.68

32 1000 0.87 6. 88 2.67

64 1000 0.95 7.43 3.38

128 1000 0.98 7.02 3.18
256 1000 0.91 8.11 3.68
512 1000 0.91 10. 46 4.80

https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/User_Guide/Batch_system#HeterogeneousjobswithMPIcommunicationacrossmodules

WikiPrint - from Polar Technologies

1024 1000 1.01 11.13 5.59
2048 1000 1.07 11.91 6.12
4096 1000 1.35 12.77 6.78
8192 1000 1.77 14.81 8.23
16384 1000 3.24 18. 66 11.19
32768 1000 4.93 25.96 16. 14
65536 640 30. 06 38.71 34.03
131072 320 44.85 60. 80 52.53
262144 160 66. 28 100. 63 83. 20
524288 80 109. 16 180. 59 144.57
1048576 40 199. 61 343. 00 271.12
2097152 20 377. 66 666. 27 521.72
4194304 10 736. 83 1314. 28 1025. 35

Al processes entering MPlI_Finalize

bin freq
64 353913

128 6303

256 6303

512 6303

1024 6311

2048 6303

4096 6303

8192 6303

16384 6303

32768 6303

65536 4035

131072 2019

262144 1011

524288 507

1048576 255

2097152 129
4194304 66
8388608 0
16777216 O
33554432 0
67108864 O

As one can see, the messages being exchanged between all processes of the run are sorted into bins according to their message lengths. The number
of bins as well as their limits can be adjusted by the following variables:

e PSP_H STOGRAM M N (default: 64 bytes) Set the lower limit regarding the message size for controlling the number of bins of the histogram.
e PSP_H STOGRAM MAX (default: 64 MByte) Set the upper limit regarding the message size for controlling the number of bins of the histogram.
e PSP_HI STOGRAM SHI FT (default: 1 bit position) Set the bit shift regarding the step width for controlling the number of bins of the histogram.

Example:

> PSP_HI STOGRAM=1L PSP_HI STOGRAM SHI FT=2 PSP_HI STOGRAM MAX=4096 srun --gw_numrl -A deep --partition=dp-cn -N2 -n2

Benchrarking Barrier
#processes = 4

#repetitions t_mn[usec] t_max[usec] t_avg[usec]
1000 5.02 5.02 5.02

.1 vB- MPI

WikiPrint - from Polar Technologies

Al processes entering MPI_Finalize

bin freq
64 16942
256 0
1024 8
4096 0

In this example, 16942 messages were smaller than or equal to 64 Byte of MPI payload, while 8 messages were greater than 256 Byte but smaller than
or equal to 1024 Byte.

Please note at this point that all messages larger than PSP_HI STOGRAM_MAX are as well counted and always fall into the last bin. Therefore, in this
example, no message of the whole run was larger than 1024 Byte, because the last bin, labeled with 4096 but collecting all messages larger than 1024,
is empty.

Modularity-aware Collectives

Feature Description

In the context of DEEP-EST and MSA, ParaStation MPI has been extended by modularity awareness also for collective MPI operations. In doing so, an
MSA-aware collective operation is conducted in a hierarchical manner where the intra- and inter- module phases are strictly separated:

i. First do all module-internal gathering and/or reduction operations if required.
ii. Then perform the inter-module operation with only one process per module being involved.

iii. Finally, distribute the data within each module in a strictly module-local manner.
This approach is here exemplarily shown in the following figure for a Broadcast operation with nine processes and three modules:
Besides Broadcast, the following collective operations are currently provided with this awareness:

e MPI _Bcast / MPI _I bcast

e MPI _Reduce /Ml _Ireduce

* MI_Alreduce/MI _lallreduce
e MPI_Scan/MPI _lscan

e MPI_Barrier

Feature Usage

For activating/controlling this feature, the following environment variables must/can be used:

- PSP_MSA AWARENESS=1 # CGenerally activate the consideration of nodul ar topol ogi es (NOT enabl ed by default)
- PSP_MSA AWARE_COLLOPS=0| 1| 2 # Sel ect the feature |evel:

0: Disable MSA awareness for collective MPI operations

1: Enabl e MSA awareness for collective MPl operations (default if PSP_MSA AWARENESS=1 is set)

2: Apply MSA awareness recursively in multi-level topologies (set PSP_SMP_AWARENESS=1 in addition)

In the recursive application of MSA awareness (PSP_MSA AWARE COLLOPS=2), a distinction is first made between inter- and intra-module
communication and then, in a second step, likewise between inter- and intra-node communication within the modules if PSP_SMP_AWARENESS=1 is set
in addition. (Please note that a meaningful usage of PSP_MSA_AWARE_COLLOPS=2 requires psnpi - 5. 4. 5 or higher.)

Usage with older versions

For psmpi versions before 5.4.6, the Module IDs (PSP_MSA_MODULE_| D) were not set automatically! This means that the user had to set and pass this
variable explicitly, for example, via a bash script:

#1/ bi n/ bash

Script (scriptO.sh) for Mdule 0: (e.g. Cluster)

APP="_/1MB-MPI 1 Bcast"

export PSP_MSA_AWARENESS=1

export PSP_MSA MODULE_ ID=0 # <- set an arbitrary ID for this nodul e!

WikiPrint - from Polar Technologies

. | ${ APP}

#1 / bi n/ bash

Script (scriptl.sh) for Mdule 1: (e.g. ESB)

APP="_./1MB-MPI 1 Bcast"

export PSP_MSA AWARENESS=1

export PSP_MSA MODULE I D=1 # <- set a different ID for this nodule!
. | ${ APP}

> srun ./scriptO : ./scriptl

Since psmpi-5.4.6, the Module ID is set automatically, which means that you can omit all the script stuff above.
However, you can still use PSP_MSA_MODULE_| D and the script approach if you want to set the Module IDs explicitly, e.g. for debugging and/or
emulating reasons.

CUDA Support by ParaStation MPI

What is CUDA awareness for MPI?

In brief, CUDA awareness in an MPI library means that a mixed CUDA + MPI application is allowed to pass pointers to CUDA buffers (these are memory
regions located on the GPU, the so-called Device memory) directly to MPI functions such as MPI _Send() or MPl _Recv() . A non CUDA-aware MPI
library would fail in such a case because the CUDA-memory cannot be accessed directly, e.g., via load/store or menctpy() but has to be transferred in
advance to the host memory via special routines such as cudaMentpy() . As opposed to this, a CUDA-aware MPI library recognizes that a pointer is
associated with a buffer within the device memory and can then copy this buffer prior to the communication into a temporarily host buffer — what is called
staging of this buffer. Additionally, a CUDA-aware MPI library may also apply some kind of optimizations, e.g., by means of exploiting so-called
GPUDirect capabilities that allow for direct RDMA transfers from and to the device memory.

Some external Resources

* ?2Getting started with CUDA (by NVIDIA)
* 2NVIDIA GPUDirect Overview (by NVIDIA)
» ?Introduction to CUDA-Aware MPI (by NVIDIA)

Current status on the DEEP system

Currently (effective October 2019), ParaStation MPI supports CUDA-awareness for Extoll just from the semantic-related point of view: The usage of
Device pointers as arguments for send and receive buffers when calling MPI functions is supported but by an explicit Staging when Extoll is used. This is
because the Extoll runtime up to now does not support GPUDirect, but EXTOLL is currently working on this in the context of DEEP-EST. As soon as
GPUDirect will be supported by Extoll, this will also be integrated and enabled in ParaStation MPI. (BTW: For InfiniBand communication, ParaStation MPI
is already GPUDirect enabled.)

Usage on the DEEP system

Warning: This manual section is currently under development. Therefore, the following usage guidelines may be not flawless and are likely to change in
some respects in the near future!

On the DEEP system, the CUDA awareness can be enabled by loading a module that links to a dedicated ParaStation MPI library providing CUDA
support:

nodul e | oad GCC
nmodul e | oad ParaStati onVPl /5. 4. 0-1- CUDA

Please note that CUDA-awareness might impact the MPI performance on systems parts where CUDA is not used. Therefore, it might be useful (and the
other way around necessary) to disable/enable the CUDA-awareness. Furthermore, additional optimisations such as GPUDirect, i.e., direct RMA
transfers to/from CUDA device memory, are available with certain pscom plugins depending on the underlying hardware. The following environment
variables may be used to influence the CUDA awareness in ParaStation MPI

PSP_CUDA=0| 1 # di sabl e/ enabl e CUDA awar eness
PSP_UCP=1 # support GPUDirect via UCX in InfiniBand networks (e.g., this is currently true for the ESB nodes)

http://docs.nvidia.com/cuda/cuda-getting-started-guide-for-linux/index.html#axzz44ZswsbEt
https://developer.nvidia.com/gpudirect
https://devblogs.nvidia.com/parallelforall/introduction-cuda-aware-mpi/

WikiPrint - from Polar Technologies

NAM Integration for ParaStation MPI

Documentation

* Proposal for accessing the NAM via MPI

e API Prototype Implementation
* Usage Example on the DEEP-EST SDV

API Prototype Implementation

For evaluating the proposed semantics and API extensions, we have already developed a shared-memory-based prototype implementation where the
persistent NAM is (more or less) ?emulated? by persistent shared-memory (with deep_mem_kind=deep_mem_persistent).

Advice to users

Please note that this prototype is not intended to actually emulate the NAM but shall rather offer a possibility for the later users and programmers to
evaluate the proposed semantics from the MPI application?s point of view. Therefore, the focus here is not put on the question of how remote memory is
managed at its location (currently by MPI processes running local to the memory later by the NAM manager or the NAM itself), but on the question of
how process-foreign memory regions can be exposed locally. That means that (at least currently) for accessing a persistent RMA window, it has to be
made sure that there is at least one MPI process running locally to each of the window?s memory regions.

Extensions to MPI
The API proposal strives to stick to the current MPI standard as close as possible and to avoid the addition of new API functions and other symbols.

However, in order to make the usage of the prototype a little bit more convenient for the user, we have added at least a small set of new symbols
(denoted with MPIX) that may be used by the applications.

extern int MPI X WN_DI SP_UNITS;

#def i ne MPI X_W N_FLAVOR | NTERCOWM (MPI_W N_FLAVOR CREATE + \
MPI W N_FLAVOR ALLOCATE + \
MPl W N_FLAVOR DYNAM C + \
MPl _W N_FLAVOR SHARED + 0)

#def i ne MPl X_W N_FLAVOR | NTERCOMM SHARED (MPI _W N_FLAVOR CREATE + \
MPI _W N_FLAVOR ALLOCATE + \
MPI _W N_FLAVOR DYNAM C + \

MPl W N_FLAVOR SHARED + 1)

Code Example for a ?Hello World? workflow

The following two C codes should demonstrate how it shall become possible to pass intermediate data between two subsequent steps of a workflow
(Step 1: hello / Step 2: world) via the persistent memory of the NAM (currently emulated by persistent shared-memory):

/** hello.c **/

/* Create persistent MPI RVA wi ndow. */
MPI _I nfo_create(& n_info);
MPI _I nfo_set(w n_info, "deep_nmemkind", "deep_mem persistent");
MPI _W n_al | ocat e(si zeof (char) * HELLO STR LEN, sizeof(char), win_info, MPI_COVW WORLD,
&0 n_base, &wi n);

/* Put some content into the local region of the wi ndow */
if(argc > 1) {

snprintf(w n_base, HELLO STR LEN, "Hello Wrld fromrank %! %", world_rank, argv[1]);
} else {

snprintf(w n_base, HELLO STR LEN, "Hello World fromrank %d!", world_rank);

}
MPI _W n_fence(0, wn);

/* Retrieve port nanme of wi ndow */
MPl _I nfo_free(&n n_i nfo);
MPI _W n_get _info(wi n, &wi n_info);

https://deeptrac.zam.kfa-juelich.de:8443/trac/attachment/wiki/Public/ParaStationMPI/DEEP-EST_Task_6.1_MPI-NAM-Proposal.pdf
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/ParaStationMPI#APIPrototypeImplementation
https://deeptrac.zam.kfa-juelich.de:8443/trac/wiki/Public/ParaStationMPI#UsageExampleontheDEEP-ESTSDV

WikiPrint - from Polar Technologies

MPI _I nfo_get(w n_info, "deep_w n_port_nane", |NFO VALUE LEN, info_value, &flag);

if(flag) {

strcpy(port_nane, info_value);

if(world_rank == root) printf("(%l) The Wndow s port nane is: %\n", world_rank, port_nane);
} else {

if(world_rank == root) printf("(%) No port nane found!\n", world_rank);
}

[** world.c **/

/* Check for port name: (to be passed as a conmand |ine argunent) */

if(argc == 1) {
if(world_rank == root) printf("[%] No port nane found!\n", world_rank);
goto finalize;

} else {
strcpy(port_nane, argv[1]);

if(world_rank == root) printf("[%] The Wndow s port nane is: %\n", world_rank, port_nane);

/* Try to connect to the persistent wi ndow */

MPI _I nfo_create(& n_info);

MPI _I nfo_set(w n_info, "deep_w n_connect", "true");

MPI _Comm set _err handl er (MPI _COVM WORLD, MPI _ERRORS_RETURN) ;

errcode = MPI_Conm connect (port_nanme, win_info, root, MPI_COW WORLD, & nter_conm);
printf("[%] Connection to persistent nmenory region established!\n", world_rank);

/* Retrieve the nunber of rempte regions: (= forner nunber of ranks) */
MPI _Comm renpt e_si ze(i nter_comm &renote_size);
if(world_rank == root) printf("[%] Nunber of renpte regions: %\ n", world_rank, renote_size);

/* Create wi ndow object for accessing the renote regions: */

MPI _W n_creat e_dynam c(MPI _I NFO_NULL, inter_comm &w n);

MPI _W n_get _attr(w n, MPI_WN_CREATE_FLAVOR, &create_flavor, &flag);
assert(*create_flavor == MPI X_ W N_FLAVOR_| NTERCOW ;

MPI _W n_fence(0, wn);

/* Check the accessibility and the content of the renpte regions: */
for(i=0; i<renote_size; i++) {
char hello_string[HELLO STR LEN;

MPI _Cet (hel l o_string, HELLO STR LEN, MPI_CHAR, i, 0, HELLO STR LEN, MPI _CHAR, win);
MPI _W n_fence(0, wn);
printf("[%l] Get from%l: %\n", world_rank, i, hello_string);

Usage Example on the DEEP-ER SDV

On the DEEP-ER SDV, there is already a special version of ParaStation MPI installed that features all the introduced API extensions. It is accessible via

the module system:

> nodul e | oad parastation/5.2.1-1-nt-wp6

When allocating a session with N nodes, one can run an MPI session (let?s say with n processes distributed across the N nodes) where each of the

processes is contributing its local and persistent memory region to an MPI window:

> salloc --partition=sdv --nodes=4 --tinme=01:00: 00
salloc: Granted job allocation 2514

> srun -n4 -N4 . /hello 'Have fun!'

(0) Running on deeper-sdv13

(1) Running on deeper-sdvl4

WikiPrint - from Polar Technologies

(2)
(3
(0)
(0)
(D
(2)
(3)
(0)
(0)
(D
(2)
(3)

Runni ng on deeper-sdvl5
Runni ng on deeper -
The Wndow s port nane is:

sdv16

Calling finalize...
Calling finalize...
Calling finalize...
Calling finalize...
Calling finalize...

Finali ze done!
Final i ze done!
Fi nal i ze done!
Fi nalize done!

shmi d: 347897856: 92010569

Afterwards, on all the nodes involved (and later on the NAM) one persistent memory region has been created by each of the MPI processes. The ?port
name? for accessing the persistent window again is in this example:

shmi d: 347897856: 92010569

By means of this port name (here to be passes as a command line argument), all the processes of a subsequent MPI session can access the persistent

window provided that there is again at least one MPI processes running locally to each of the persistent but distributed regions:

> srun -n4 -N4
Runni ng on deeper-
Runni ng on deeper -
Runni ng on deeper -
Runni ng on deeper-
The Wndow s port nane is:
Connection to persistent
Connection to persistent
Connection to persistent
Connection to persistent

[0]
[1]
[2]
[3]
[0]
[1]
[3]
(0]
[2]
[0]
[0]
[1]
[2]
[3]
(0]
[1]
[2]
[3]
[0]
[1]
[2]
[3]
(0]
[1]
[2]
[3]
[0]
[1]
[2]
[3]
(0]
[1]
[2]
[3]

Get fromO: Hello
Get fromO: Hello
Get fromO: Hello
Get fromO: Hello
CGet froml: Hello
CGet froml: Hello
Get from1: Hello
Get from1: Hello
Get from2: Hello
Get from2: Hello
Get from2: Hello
Get from2: Hello
Get from3: Hello
Cet from3: Hello
Get from3: Hello
Get from3: Hello

sdv13
sdv14
sdv15
sdv16

World
World
World
World
worl d
worl d
worl d
Worl d
World
World
World
World
worl d
worl d
worl d
Worl d

Calling finalize...
Calling finalize...
Calling finalize...
Calling finalize...

Fi nalize done!
Fi nalize done!
Final i ze done!
Finali ze done!

menory regi
menory regi
nenory regi
nmenory regi
Nunber of renpte regions: 4

from
from
from
from
from
from
from
from
from
from
from
from
from
from
from
from

rank
rank
rank
rank
rank
rank
rank
rank
rank
rank
rank
rank
rank
rank
rank
rank

0!
0!
0!
0!
1!
1!
1!
1!
2!
2!
2!
2!
3!
3!
3!
3!

./world shm d: 347897856: 92010569

shmi d: 347897856: 92010569

on established!
on established!
on established!
on established!

Have fun!
Have fun!
Have fun!
Have fun!
Have fun!
Have fun!
Have fun!
Have fun!
Have fun!
Have fun!
Have fun!
Have fun!
Have fun!
Have fun!
Have fun!
Have fun!

Advice to users

Pleases note that if not all persistent memory regions are covered by the subsequent session, the ?connection establishment? to the remote RMA
window fails:

WikiPrint - from Polar Technologies

> srun -n4 -N2 . /world shmd: 347897856: 92010569

[3] Running on deeper-sdvl4

[1] Running on deeper-sdvl3

[2] Running on deeper-sdvl4

[0] Running on deeper-sdvl3

[0] The Wndow s port nanme is: shm d: 347930624: 92010569
[0] ERROR Could not connect to persistent nmenory region!
application called MPI_Abort(MPI_COM WORLD, -1)

5

Cleaning up of persistent memory regions

If the connection to a persistent memory region succeeds, the window and all of its memory regions will eventually be removed by the MPI_Win_free call
of the subsequent MPI session (here by world.c) at least if not deep_mem_persistent is passes again as an Info argument. However, if a connection
attempt fails, the persistent memory regions still persist.

For explicitly cleaning up those artefacts, one can use a simple batch script:

#! / bi n/ bash
keys="ipcs | grep 777 | cut -d ' -f2°
for key in $keys ; do
i pcrm-m $key
done

Advice to administrators

Obviously, a good idea would be the integration of e such an automated cleaning-up procedure as a default into the epilogue scripts for the jobs.

	Heterogeneous Jobs using inter-module MPI communication
	Heterogeneous Jobs using inter-module MPI communication
	Application-dependent Tuning

	Reporting of Statistical Information
	Modularity-aware Collectives
	Feature Description
	Feature Usage
	Usage with older versions

	CUDA Support by ParaStation MPI
	What is CUDA awareness for MPI?
	Some external Resources
	Current status on the DEEP system
	Usage on the DEEP system

	NAM Integration for ParaStation MPI
	Documentation
	API Prototype Implementation
	Extensions to MPI
	Code Example for a ?Hello World? workflow
	Usage Example on the DEEP-ER SDV
	Cleaning up of persistent memory regions

